7 resultados para Modified Delphi method
em Digital Commons at Florida International University
Resumo:
The purpose of this study was to identify the needed competencies of a Recreational Foodservice manager. A three round Delphi method of iteration was used. Delphi is a research method that utilizes iterating rounds to elicit the opinion of a panel of experts regarding a specific subject.^ A nominating committee of 22 industry leaders was consulted to establish a panel of 40 management experts, of which 35 (87.5%) completed all three rounds of the Delphi study.^ Round One of the study identified 17 specific job functions of a Recreational Foodservice manager. The researcher prepared an instrument detailing 60 competencies derived from an analysis of Round One results and distributed it as a Round Two instrument requesting the panel opinion regarding the relative importance of each listed competency on a five point Likert scale.^ The results of Round Two were tabulated and analyzed to ascertain areas of consensus. A Round Three instrument was prepared advising panelists of all areas of consensus, their dissenting opinions, if any, and a request for a revised opinion.^ A final report was prepared listing the 60 competencies and the panel opinion that eight were of highest priority, 29 of above average priority, and 23 of average priority. No item received two other available ratings, below average priority and lowest priority.^ The implications of these findings suggest necessary areas of curriculum development and industry management development to implement professionalism for Recreational Foodservice managers. ^
Resumo:
In an overcapacity world, where the customers can choose from many similar products to satisfy their needs, enterprises are looking for new approaches and tools that can help them not only to maintain, but also to increase their competitive edge. Innovation, flexibility, quality, and service excellence are required to, at the very least, survive the on-going transition that industry is experiencing from mass production to mass customization. In order to help these enterprises, this research develops a Supply Chain Capability Maturity Model named S(CM)2. The Supply Chain Capability Maturity Model is intended to model, analyze, and improve the supply chain management operations of an enterprise. The Supply Chain Capability Maturity Model provides a clear roadmap for enterprise improvement, covering multiple views and abstraction levels of the supply chain, and provides tools to aid the firm in making improvements. The principal research tool applied is the Delphi method, which systematically gathered the knowledge and experience of eighty eight experts in Mexico. The model is validated using a case study and interviews with experts in supply chain management. The resulting contribution is a holistic model of the supply chain integrating multiple perspectives, and providing a systematic procedure for the improvement of a company’s supply chain operations.
Resumo:
In an overcapacity world, where the customers can choose from many similar products to satisfy their needs, enterprises are looking for new approaches and tools that can help them not only to maintain, but also to increase their competitive edge. Innovation, flexibility, quality, and service excellence are required to, at the very least, survive the on-going transition that industry is experiencing from mass production to mass customization. In order to help these enterprises, this research develops a Supply Chain Capability Maturity Model named S(CM)2. The Supply Chain Capability Maturity Model is intended to model, analyze, and improve the supply chain management operations of an enterprise. The Supply Chain Capability Maturity Model provides a clear roadmap for enterprise improvement, covering multiple views and abstraction levels of the supply chain, and provides tools to aid the firm in making improvements. The principal research tool applied is the Delphi method, which systematically gathered the knowledge and experience of eighty eight experts in Mexico. The model is validated using a case study and interviews with experts in supply chain management. The resulting contribution is a holistic model of the supply chain integrating multiple perspectives, and providing a systematic procedure for the improvement of a company’s supply chain operations.
Resumo:
Numerical optimization is a technique where a computer is used to explore design parameter combinations to find extremes in performance factors. In multi-objective optimization several performance factors can be optimized simultaneously. The solution to multi-objective optimization problems is not a single design, but a family of optimized designs referred to as the Pareto frontier. The Pareto frontier is a trade-off curve in the objective function space composed of solutions where performance in one objective function is traded for performance in others. A Multi-Objective Hybridized Optimizer (MOHO) was created for the purpose of solving multi-objective optimization problems by utilizing a set of constituent optimization algorithms. MOHO tracks the progress of the Pareto frontier approximation development and automatically switches amongst those constituent evolutionary optimization algorithms to speed the formation of an accurate Pareto frontier approximation. Aerodynamic shape optimization is one of the oldest applications of numerical optimization. MOHO was used to perform shape optimization on a 0.5-inch ballistic penetrator traveling at Mach number 2.5. Two objectives were simultaneously optimized: minimize aerodynamic drag and maximize penetrator volume. This problem was solved twice. The first time the problem was solved by using Modified Newton Impact Theory (MNIT) to determine the pressure drag on the penetrator. In the second solution, a Parabolized Navier-Stokes (PNS) solver that includes viscosity was used to evaluate the drag on the penetrator. The studies show the difference in the optimized penetrator shapes when viscosity is absent and present in the optimization. In modern optimization problems, objective function evaluations may require many hours on a computer cluster to perform these types of analysis. One solution is to create a response surface that models the behavior of the objective function. Once enough data about the behavior of the objective function has been collected, a response surface can be used to represent the actual objective function in the optimization process. The Hybrid Self-Organizing Response Surface Method (HYBSORSM) algorithm was developed and used to make response surfaces of objective functions. HYBSORSM was evaluated using a suite of 295 non-linear functions. These functions involve from 2 to 100 variables demonstrating robustness and accuracy of HYBSORSM.
Resumo:
Many classical as well as modern optimization techniques exist. One such modern method belonging to the field of swarm intelligence is termed ant colony optimization. This relatively new concept in optimization involves the use of artificial ants and is based on real ant behavior inspired by the way ants search for food. In this thesis, a novel ant colony optimization technique for continuous domains was developed. The goal was to provide improvements in computing time and robustness when compared to other optimization algorithms. Optimization function spaces can have extreme topologies and are therefore difficult to optimize. The proposed method effectively searched the domain and solved difficult single-objective optimization problems. The developed algorithm was run for numerous classic test cases for both single and multi-objective problems. The results demonstrate that the method is robust, stable, and that the number of objective function evaluations is comparable to other optimization algorithms.
Resumo:
We have modified a technique which uses a single pair of primer sets directed against homologous but distinct genes on the X and Y chromosomes, all of which are coamplified in the same reaction tube with trace amounts of radioactivity. The resulting bands are equal in length, yet distinguishable by restriction enzyme sites generating two independent bands, a 364 bp X-specific band and a 280 bp Y-specific band. A standard curve was generated to show the linear relationship between X/Y ratio average vs. %Y or %X chromosomal content. Of the 51 purified amniocyte DNA samples analyzed, 16 samples showed evidence of high % X contamination while 2 samples demonstrated higher % Y than the expected 50% X and 50% Y chromosomal content. With regards to the 25 processed sperm samples analyzed, X-sperm enrichment was evident when compared to the primary sex ratio whereas Y-sperm was enriched when we compared before and after selection samples.
Resumo:
By using near infrared spectroscopy (NIRS) and by modifying the current Somanetics® optodes being used with the INVOS oximeter, the modified optodes are made to be fairly functional not only across the forehead, but across the hairy regions of the scalp as well. A major problem arises in the positioning of these optodes on the patients scalp and holding them in place while recording data. Another problem arises in the inconsistent repeatability of the trends displayed in the recorded data. A method was developed to facilitate the easy placement of these optodes on the patients scalp keeping in mind thepatient's comfort. The sensitivity of the optodes, too, was improved by incorporating better refined techniques for manufacturing the fiber optic brushes and fixing the same to the optode transmitting and receiving windows. The modified and improved optodes, in the single as well as in the multiplexed modes, were subjected to various tests on different areas of the brain to determine their efficiency and functionality.