1 resultado para Miopic Acquired Progressive Esotropia
em Digital Commons at Florida International University
Filtro por publicador
- Academic Research Repository at Institute of Developing Economies (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (4)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (1)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (2)
- Archive of European Integration (106)
- Aston University Research Archive (25)
- Biblioteca Digital | Sistema Integrado de Documentación | UNCuyo - UNCUYO. UNIVERSIDAD NACIONAL DE CUYO. (3)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (21)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (38)
- Biblioteca Virtual del Sistema Sanitario Público de Andalucía (BV-SSPA), Junta de Andalucía. Consejería de Salud y Bienestar Social, Spain (6)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (108)
- Brock University, Canada (5)
- CentAUR: Central Archive University of Reading - UK (18)
- Collection Of Biostatistics Research Archive (1)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (1)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (23)
- Cor-Ciencia - Acuerdo de Bibliotecas Universitarias de Córdoba (ABUC), Argentina (1)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (1)
- CUNY Academic Works (1)
- Dalarna University College Electronic Archive (2)
- Digital Commons - Montana Tech (2)
- Digital Commons @ DU | University of Denver Research (1)
- Digital Commons at Florida International University (1)
- DigitalCommons@The Texas Medical Center (14)
- Digitale Sammlungen - Goethe-Universität Frankfurt am Main (3)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (6)
- Duke University (1)
- Gallica, Bibliotheque Numerique - Bibliothèque nationale de France (French National Library) (BnF), France (4)
- Harvard University (1)
- Institute of Public Health in Ireland, Ireland (3)
- Instituto Gulbenkian de Ciência (1)
- Instituto Politécnico do Porto, Portugal (1)
- Memoria Académica - FaHCE, UNLP - Argentina (3)
- National Center for Biotechnology Information - NCBI (27)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (2)
- Publishing Network for Geoscientific & Environmental Data (12)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (3)
- RCAAP - Repositório Científico de Acesso Aberto de Portugal (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (1)
- Repositório da Produção Científica e Intelectual da Unicamp (3)
- Repositório digital da Fundação Getúlio Vargas - FGV (1)
- Repositório do Centro Hospitalar de Lisboa Central, EPE - Centro Hospitalar de Lisboa Central, EPE, Portugal (8)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (41)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (2)
- School of Medicine, Washington University, United States (2)
- Scielo Saúde Pública - SP (82)
- Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom (1)
- Universidad Autónoma de Nuevo León, Mexico (1)
- Universidad de Alicante (4)
- Universidad del Rosario, Colombia (2)
- Universidad Politécnica de Madrid (8)
- Universidade dos Açores - Portugal (1)
- Universidade Federal do Pará (3)
- Universidade Metodista de São Paulo (1)
- Universita di Parma (1)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (1)
- Université de Lausanne, Switzerland (119)
- Université de Montréal (1)
- Université de Montréal, Canada (8)
- University of Connecticut - USA (1)
- University of Michigan (127)
- University of Queensland eSpace - Australia (65)
- University of Washington (1)
Resumo:
Mapping of vegetation patterns over large extents using remote sensing methods requires field sample collections for two different purposes: (1) the establishment of plant association classification systems from samples of relative abundance estimates; and (2) training for supervised image classification and accuracy assessment of satellite data derived maps. One challenge for both procedures is the establishment of confidence in results and the analysis across multiple spatial scales. Continuous data sets that enable cross-scale studies are very time consuming and expensive to acquire and such extensive field sampling can be invasive. The use of high resolution aerial photography (hrAP) offers an alternative to extensive, invasive, field sampling and can provide large volume, spatially continuous, reference information that can meet the challenges of confidence building and multi-scale analysis.