7 resultados para Minorities--Kenya
em Digital Commons at Florida International University
Resumo:
This study examined the effectiveness of the TEAM (Teaching Enrichment Activities to Minorities) program in preparing and identifying underrepresented students for entrance into the gifted program. Miami-Dade County Public Schools (M-DCPS) developed the TEAM program as an intervention program aimed at developing student's thinking skills and critical thinking skills in all subject areas and prepare students for possible placement into the gifted program. ^ A systematic sampling strategy was utilized to select three TEAM schools from each of the six regions in M-DCPS for the sample, for a total of 18 schools. A pool of the students that participated in the TEAM program in 2003-2004 in the 18 schools selected were identified as the TEAM Sample students. A matching sample was created from 18 public schools in Miami-Dade County that did not implement the TEAM program in 2003-2004. The Matching Sample created a match for 806 students in the TEAM sample, for a total of 1612 subjects for the study. ^ This study used a logistical regression design to analyze the relationships of multiple independent variables, including: ethnicity, limited English proficiency, gender, free/reduced lunch status, grade level, reading achievement, mathematics achievement, and participation TEAM on the dependent variables of referral for the gifted program and eligibility into the gifted program. The first analysis found the variables of grade level, participation in TEAM, reading achievement, and mathematics achievement were all significant variables in determining if a student was referred for the gifted program. The second analysis found the variables of grade level, gender, free/reduced lunch status, reading achievement, and mathematics achievement were all significant variables in determining if a student was eligible for the gifted program. ^ Recommendations based on the results of this study include the expansion of the TEAM program in M-DCPS to include additional grade levels and schools. Additionally, adopting a broadened definition of giftedness and reviewing the screening and placement policies for potentially gifted students is recommended. Adopting multicultural and broader definitions of giftedness and constructing better tools and programs, such as TEAM, for assessing and identifying potential gifted students, represent small steps towards creating equitable education for all students. ^
Resumo:
This study investigated how ethnicity, perceived family/friend social support (FSS), and health behaviors are associated with diabetes self-management (DSM) in minorities. The participants were recruited by community outreach methods and included 174 Cuban-, 121 Haitian- and 110 African-Americans with type 2 diabetes. The results indicated that ethnicity and FSS were associated with DSM. Higher FSS scores were associated with higher DSM scores, independent of ethnicity. There were ethnic differences in several elements of FSS. DSM was highest in Haitian- as compared to African-Americans; yet Haitian Americans had poorer glycemic control. The findings suggest FSS together with ethnicity may influence critical health practices. Studies are needed that further investigate the relationships among minorities with diabetes, their intimate network (family and friends) and the diabetes care process.
Resumo:
OBJECTIVE: to examine the relationships among reported medical advice, diabetes education, health insurance and health behavior of individuals with diabetes by race/ethnicity and gender. METHOD: Secondary analysis of data (N = 654) for adults ages > or = 21 years with diabetes acquired through the National Health and Nutrition Examination Survey (NHANES) for the years 2007-2008 comparing Black, non-Hispanics (BNH) and Mexican-Americans (MA) with White, non-Hispanics (WNH). The NHANES survey design is a stratified, multistage probability sample of the civilian noninstitutionalized U.S. population. Sample weights were applied in accordance with NHANES specifications using the complex sample module of IBM SPSS version 18. RESULTS: The findings revealed statistical significant differences in reported medical advice given. BNH [OR = 1.83 (1.16, 2.88), p = 0.013] were more likely than WNH to report being told to reduce fat or calories. Similarly, BNH [OR = 2.84 (1.45, 5.59), p = 0.005] were more likely than WNH to report that they were told to increase their physical activity. Mexican-Americans were less likely to self-monitor their blood glucose than WNH [OR = 2.70 (1.66, 4.38), p < 0.001]. There were differences by race/ethnicity for reporting receiving recent diabetes education. Black, non-Hispanics were twice as likely to report receiving diabetes education than WNH [OR = 2.29 (1.36, 3.85), p = 0.004]. Having recent diabetes education increased the likelihood of performing several diabetes self-management behaviors independent of race. CONCLUSIONS: There were significant differences in reported medical advice received for diabetes care by race/ethnicity. The results suggest ethnic variations in patient-provider communication and may be a consequence of their health beliefs, patient-provider communication as well as length of visit and access to healthcare. These findings clearly demonstrate the need for government sponsored programs, with a patient-centered approach, augmenting usual medical care for diabetes. Moreover, the results suggest that public policy is needed to require the provision of diabetes education at least every two years by public health insurance programs and recommend this provision for all private insurance companies
Resumo:
Increasingly erratic flow in the upper reaches of the Mara River, has directed attention to land use change as the major cause of this problem. The semi-distributed hydrological model SWAT and Landsat imagery were utilized in order to 1) map existing land use practices, 2) determine the impacts of land use change on water flux; and 3) determine the impacts of climate change scenarios on the water flux of the upper Mara River. This study found that land use change scenarios resulted in more erratic discharge while climate change scenarios had a more predictable impact on the discharge and water balance components. The model results showed the flow was more sensitive to the rainfall changes than land use changes but land use changes reduce dry season flows which is a major problem in the basin. Deforestation increased the peak flows which translated to increased sediment loading in the Mara River.
Resumo:
Some of the most valued natural and cultural landscapes on Earth lie in river basins that are poorly gauged and have incomplete historical climate and runoff records. The Mara River Basin of East Africa is such a basin. It hosts the internationally renowned Mara-Serengeti landscape as well as a rich mixture of indigenous cultures. The Mara River is the sole source of surface water to the landscape during the dry season and periods of drought. During recent years, the flow of the Mara River has become increasingly erratic, especially in the upper reaches, and resource managers are hampered by a lack of understanding of the relative influence of different sources of flow alteration. Uncertainties about the impacts of future climate change compound the challenges. We applied the Soil Water Assessment Tool (SWAT) to investigate the response of the headwater hydrology of the Mara River to scenarios of continued land use change and projected climate change. Under the data-scarce conditions of the basin, model performance was improved using satellite-based estimated rainfall data, which may also improve the usefulness of runoff models in other parts of East Africa. The results of the analysis indicate that any further conversion of forests to agriculture and grassland in the basin headwaters is likely to reduce dry season flows and increase peak flows, leading to greater water scarcity at critical times of the year and exacerbating erosion on hillslopes. Most climate change projections for the region call for modest and seasonally variable increases in precipitation (5–10 %) accompanied by increases in temperature (2.5–3.5 °C). Simulated runoff responses to climate change scenarios were non-linear and suggest the basin is highly vulnerable under low (−3 %) and high (+25 %) extremes of projected precipitation changes, but under median projections (+7 %) there is little impact on annual water yields or mean discharge. Modest increases in precipitation are partitioned largely to increased evapotranspiration. Overall, model results support the existing efforts of Mara water resource managers to protect headwater forests and indicate that additional emphasis should be placed on improving land management practices that enhance infiltration and aquifer recharge as part of a wider program of climate change adaptation.
Resumo:
The Mara River Basin (MRB) is endowed with pristine biodiversity, socio-cultural heritage and natural resources. The purpose of my study is to develop and apply an integrated water resource allocation framework for the MRB based on the hydrological processes, water demand and economic factors. The basin was partitioned into twelve sub-basins and the rainfall runoff processes was modeled using the Soil and Water Assessment Tool (SWAT) after satisfactory Nash-Sutcliff efficiency of 0.68 for calibration and 0.43 for validation at Mara Mines station. The impact and uncertainty of climate change on the hydrology of the MRB was assessed using SWAT and three scenarios of statistically downscaled outputs from twenty Global Circulation Models. Results predicted the wet season getting more wet and the dry season getting drier, with a general increasing trend of annual rainfall through 2050. Three blocks of water demand (environmental, normal and flood) were estimated from consumptive water use by human, wildlife, livestock, tourism, irrigation and industry. Water demand projections suggest human consumption is expected to surpass irrigation as the highest water demand sector by 2030. Monthly volume of water was estimated in three blocks of current minimum reliability, reserve (>95%), normal (80–95%) and flood (40%) for more than 5 months in a year. The assessment of water price and marginal productivity showed that current water use hardly responds to a change in price or productivity of water. Finally, a water allocation model was developed and applied to investigate the optimum monthly allocation among sectors and sub-basins by maximizing the use value and hydrological reliability of water. Model results demonstrated that the status on reserve and normal volumes can be improved to ‘low’ or ‘moderate’ by updating the existing reliability to meet prevailing demand. Flow volumes and rates for four scenarios of reliability were presented. Results showed that the water allocation framework can be used as comprehensive tool in the management of MRB, and possibly be extended similar watersheds.