5 resultados para Minimal inhibitory concentration
em Digital Commons at Florida International University
Resumo:
Quorum sensing (QS) is the phenomenon by which microorganisms regulate gene expression in response to cell-population density. These microorganisms synthesize and secrete small molecules known as autoinducers that increase in concentration as a function of cell density. Once the cell detects the minimal threshold concentration of an autoinducer, the gene expression is altered accordingly. Although the cellular circuitry responding to QS is relatively conserved, the cellular processes regulated by QS, for example are conjugation, motility, sporulation, biofilm formation and production of virulence factors importamt for infection. Since many pathogens have developed resistance to available antibiotics, novel therapies are required to further treat these pathogens. Inhibitors of QS are potential therapeutic candidates since they would inhibit virulence without selecting for antibiotic resistant strains. Previous studies have shown that the Chinese herb Panax ginseng contains compounds that inhibit QS activity. To further characterize this activity, a highly sensitive quantitative liquid assay was developed using a Chromobacterium violaceum AHL mutant, CV026 as a biomonitor strain. After confirmation that P. ginseng aqueous extracts had anti-QS activity, the extract was fractionated on a reverse phase C18 Sep Pak column. Most anti-QS activity was present in the flow through, and compounds eluted with ten percent acetonitrile in water antibacterial activity. We thus conclude that P. ginseng has anti-QS activity and the active compound is water soluble. Compounds from P. ginseng, could be used as a lead structure to design compound with higher anti-QS activity for therapeutic treatments.
Resumo:
One-third of botanical remedies from southern Italy are used to treat skin and soft tissue infections (SST's). Methicillin-resistant Staphylococcus aureus (MRSA), a common cause of SSTIs, is responsible for increased morbidity and mortality from infections. Therapeutic options are limited by antibiotic resistance. Many plants possess potent antimicrobial compounds for these disorders. Validation of traditional medical practices is important for the people who rely on medicinal plants. Moreover, identification of novel antibiotics and anti-pathogenic agents for MRSA is important to global healthcare.^ I took an ethnopharmacological approach to understand how Italian medicinal plants used for the treatment of SSTIs affect MRSA growth and virulence. My hypothesis was that plants used in folk remedies for SSTI would exhibit lower cytotoxicity and greater inhibition of bacterial growth, biofilm formation and toxin production in MRSA than plants used for remedies unrelated to the skin or for plants with no ethnomedical application. The field portion of my research was conducted in the Vulture-Alto Bradano area of southern Italy. I collected 104 plant species and created 168 crude extracts. In the lab, I screened samples for activity against MRSA in a battery of bioassays. Growth inhibition was analyzed using broth microtiter assays for determination of the minimum inhibitory concentration. Interference with quorum-sensing (QS) processes, which mediate pathogenicity, was quantified through RP-HPLC of δ-toxin production. Interference with biofilm formation and adherence was assessed using staining methods. The mammalian cytotoxicity of natural products was analyzed using MTT cell proliferation assay techniques.^ Although bacteriostatic activity was limited, extracts from six plants used in Italian folk medicine (Arundo donax, Ballota nigra, Juglans regia, Leopoldia comosa, Marrubium vulgare, and Rubus ulmifolius ) significantly inhibited biofilm formation and adherence. Moreover, plants used to treat SSTI demonstrated significantly greater anti-biofilm activity when compared to plants with no ethnomedical application. QSI activity was evident in 90% of the extracts tested and extracts from four plants ( Ballota nigra, Castanea saliva, Rosmarinus officinalis, and Sambucus ebulus) exhibited a significant dose-dependent response. Some of the plant remedies for SSTI identified in this study can be validated due to anti-MRSA activity.^
Resumo:
Pseudomonas aeruginosa, a Gram-negative bacterium, an opportunistic pathogen that infects individuals suffering from reduced immunity or damaged tissue. The treatment of these infections has become a major problem due to its increasing antibiotic resistance. Many multi-drug resistant isolates of P. aeruginosa can thwart most antibiotic classes including ?- lactams, fluoroquinolones, and aminoglycosides. Its ability to combat ?-lactams is in part due to expression of AmpC, a major chromosomally encoded ?-lactamase. The expression of ampC is positively regulated by AmpR. Besides antibiotic resistance, AmpR is an important regulator of various factors that are required for establishing acute and chronic infections. Loss of ampR makes P. aeruginosa susceptible to ?-lactams and less virulent than the wild type. We hypothesize that AmpR is a potential therapeutic target. In the absence of new drugs in the pipeline, the aim of this study is to find an AmpR-specific inhibitor to assist and improve the use of currently available ?- lactam treatment. A small-molecule library from Torrey Pines Institute will be used in this study. Two reporter systems, lux and lacZ, fused to a PampC promotor will be used to assess AmpR activity. Positive hits will be those that inhibit 50% PampC activity in the presence of sub inhibitory concentration of imipenem, a ?- lactam. The top positive hits will be screened for their ability to cause human cell-cytotoxicity. The non-cytotoxic hits will be assessed for their ability to affect P. aeruginosa virulence and antibiotic resistance using various in vitro assays. Determination of potential AmpR inhibitors will prove to be useful in fighting off infections and may save countless patients suffering from these infections.
Resumo:
Gemcitabine is a highly potent chemotherapeutic nucleoside agent used in the treatment of several cancers and solid tumors. However, it is therapeutically limitated because of toxicity to normal cells and its rapid intracellular deamination by cytidine deaminase into the inactive uracil derivative. Modification at the 4-(N) position of gemcitabine's exocyclic amine to an -amide functionality is a well reported prodrug strategy which has been that confers a resistance to intracellular deamination while also altering pharmacokinetics of the parent drug. Coupling of gemcitabine to carboxylic acids with varying terminal moieties afforded the 4-N-alkanoylgemcitabines whereas reaction of 4-N-tosylgemcitabine with the corresponding alkyl amines gave the 4-N-alkylgemcitabines. The 4-N-alkanoyl and 4-N-alkyl gemcitabine analogues with a terminal hydroxyl group on the 4-N-alkanoyl or 4-N-alkyl chain were efficiently fluorinated either with diethylaminosulfur trifluoride or under conditions that are compatible with the synthetic protocols for 18F labeling, such as displacement of the corresponding mesylate with KF/Kryptofix 2.2.2. The 4-N-alkanoylgemcitabine analogues displayed potent cytostatic activities against murine and human tumor cell lines with 50% inhibitory concentration (IC50) values in the range of low nM, whereas cytotoxicity of the 4-N-alkylgemcitabine derivatives were in the low to modest µM range. The cytostatic activity of the 4-N-alkanoylgemcitabines was reduced by several orders of magnitude in the 2'-deoxycytidine kinase (dCK)-deficient CEM/dCK- cell line while the 4-N-alkylgemcitabines were only lowered by 2-5 times. None of the 4-N-modified gemcitabines were found to be substrates for cytosolic dCK, however all were found to inhibit DNA synthesis. As such, the 4-N-alkanoyl gemcitabine derivatives likely need to be converted to gemcitabine prior to achieving their significant cytostatic potential, whereas the 4-N-alkylgemcitabines reach their modest activity without "measurable" conversion to gemcitabine. Thus, the 4-N-alkylgemcitabines provide valuable insight on the metabolism of 4-N-modified gemcitabine prodrugs.
Resumo:
The 9/11 Act mandates the inspection of 100% of cargo shipments entering the U.S. by 2012 and 100% inspection of air cargo by March 2010. So far, only 5% of inbound shipping containers are inspected thoroughly while air cargo inspections have fared better at 50%. Government officials have admitted that these milestones cannot be met since the appropriate technology does not exist. This research presents a novel planar solid phase microextraction (PSPME) device with enhanced surface area and capacity for collection of the volatile chemical signatures in air that are emitted from illicit compounds for direct introduction into ion mobility spectrometers (IMS) for detection. These IMS detectors are widely used to detect particles of illicit substances and do not have to be adapted specifically to this technology. For static extractions, PDMS and sol-gel PDMS PSPME devices provide significant increases in sensitivity over conventional fiber SPME. Results show a 50–400 times increase in mass detected of piperonal and a 2–4 times increase for TNT. In a blind study of 6 cases suspected to contain varying amounts of MDMA, PSPME-IMS correctly detected 5 positive cases with no false positives or negatives. One of these cases had minimal amounts of MDMA resulting in a false negative response for fiber SPME-IMS. A La (dihed) phase chemistry has shown an increase in the extraction efficiency of TNT and 2,4-DNT and enhanced retention over time. An alternative PSPME device was also developed for the rapid (seconds) dynamic sampling and preconcentration of large volumes of air for direct thermal desorption into an IMS. This device affords high extraction efficiencies due to strong retention properties under ambient conditions resulting in ppt detection limits when 3.5 L of air are sampled over the course of 10 seconds. Dynamic PSPME was used to sample the headspace over the following: MDMA tablets (12–40 ng detected of piperonal), high explosives (Pentolite) (0.6 ng detected of TNT), and several smokeless powders (26–35 ng of 2,4-DNT and 11–74 ng DPA detected). PSPME-IMS technology is flexible to end-user needs, is low-cost, rapid, sensitive, easy to use, easy to implement, and effective. ^