3 resultados para Metafictive utterances
em Digital Commons at Florida International University
Resumo:
Math literacy is imperative to succeed in society. Experience is key for acquiring math literacy. A preschooler's world is full of mathematical experiences. Children are continually counting, sorting and comparing as they play. As children are engaged in these activities they are using language as a tool to express their mathematical thinking. If teachers are aware of these teachable moments and help children bridge their daily experiences to mathematical concepts, math literacy may be enhanced. This study described the interactions between teachers and preschoolers, determining the extent to which teachers scaffold children's everyday language into expressions of mathematical concepts. Of primary concern were the teachers' responsive interactions to children's expressions of an implicit mathematical utterance made while engaged in block play. The parallel mixed methods research design consisted of two strands. Strand 1 of the study focused on preschoolers' use of everyday language and the teachers' responses after a child made a mathematical utterance. Twelve teachers and 60 students were observed and videotaped while engaged in block play. Each teacher worked with five children for 20 minutes, yielding 240 minutes of observation. Interaction analysis was used to deductively analyze the recorded observations and field notes. Using a priori codes for the five mathematical concepts, it was found children produced 2,831 mathematical utterances. Teachers ignored 60% of these utterances and responded to, but did not mediate 30% of them. Only 10% of the mathematical utterances were mediated to a mathematical concept. Strand 2 focused on the teacher's view of the role of language in early childhood mathematics. The 12 teachers who had been observed as part of the first strand of the study were interviewed. Based on a thematic analysis of these interviews three themes emerged: (a) the importance of a child's environment, (b) the importance of an education in society, and (c) the role of math in early childhood. Finally, based on a meta-inference of both strands, three themes emerged: (a) teacher conception of math, (b) teacher practice, and (c) teacher sensitivity. Implications based on the findings involve policy, curriculum, and professional development.
Resumo:
Research endeavors on spoken dialogue systems in the 1990s and 2000s have led to the deployment of commercial spoken dialogue systems (SDS) in microdomains such as customer service automation, reservation/booking and question answering systems. Recent research in SDS has been focused on the development of applications in different domains (e.g. virtual counseling, personal coaches, social companions) which requires more sophistication than the previous generation of commercial SDS. The focus of this research project is the delivery of behavior change interventions based on the brief intervention counseling style via spoken dialogue systems. ^ Brief interventions (BI) are evidence-based, short, well structured, one-on-one counseling sessions. Many challenges are involved in delivering BIs to people in need, such as finding the time to administer them in busy doctors' offices, obtaining the extra training that helps staff become comfortable providing these interventions, and managing the cost of delivering the interventions. Fortunately, recent developments in spoken dialogue systems make the development of systems that can deliver brief interventions possible. ^ The overall objective of this research is to develop a data-driven, adaptable dialogue system for brief interventions for problematic drinking behavior, based on reinforcement learning methods. The implications of this research project includes, but are not limited to, assessing the feasibility of delivering structured brief health interventions with a data-driven spoken dialogue system. Furthermore, while the experimental system focuses on harmful alcohol drinking as a target behavior in this project, the produced knowledge and experience may also lead to implementation of similarly structured health interventions and assessments other than the alcohol domain (e.g. obesity, drug use, lack of exercise), using statistical machine learning approaches. ^ In addition to designing a dialog system, the semantic and emotional meanings of user utterances have high impact on interaction. To perform domain specific reasoning and recognize concepts in user utterances, a named-entity recognizer and an ontology are designed and evaluated. To understand affective information conveyed through text, lexicons and sentiment analysis module are developed and tested.^
Resumo:
Research endeavors on spoken dialogue systems in the 1990s and 2000s have led to the deployment of commercial spoken dialogue systems (SDS) in microdomains such as customer service automation, reservation/booking and question answering systems. Recent research in SDS has been focused on the development of applications in different domains (e.g. virtual counseling, personal coaches, social companions) which requires more sophistication than the previous generation of commercial SDS. The focus of this research project is the delivery of behavior change interventions based on the brief intervention counseling style via spoken dialogue systems. Brief interventions (BI) are evidence-based, short, well structured, one-on-one counseling sessions. Many challenges are involved in delivering BIs to people in need, such as finding the time to administer them in busy doctors' offices, obtaining the extra training that helps staff become comfortable providing these interventions, and managing the cost of delivering the interventions. Fortunately, recent developments in spoken dialogue systems make the development of systems that can deliver brief interventions possible. The overall objective of this research is to develop a data-driven, adaptable dialogue system for brief interventions for problematic drinking behavior, based on reinforcement learning methods. The implications of this research project includes, but are not limited to, assessing the feasibility of delivering structured brief health interventions with a data-driven spoken dialogue system. Furthermore, while the experimental system focuses on harmful alcohol drinking as a target behavior in this project, the produced knowledge and experience may also lead to implementation of similarly structured health interventions and assessments other than the alcohol domain (e.g. obesity, drug use, lack of exercise), using statistical machine learning approaches. In addition to designing a dialog system, the semantic and emotional meanings of user utterances have high impact on interaction. To perform domain specific reasoning and recognize concepts in user utterances, a named-entity recognizer and an ontology are designed and evaluated. To understand affective information conveyed through text, lexicons and sentiment analysis module are developed and tested.