2 resultados para Metabolic activity inhibition
em Digital Commons at Florida International University
Resumo:
The amyloid cascade hypothesis places amyloid-β at the origin of Alzheimer's disease (AD). Amyloid-β (Aβ) is the product of the sequential cleavage of the amyloid precursor protein (APP) by the enzymes β- and γ-secretases. An inflammatory component to AD has been suggested in association with CD40 (a member of the tumor necrosis factor receptor superfamily (TNFRS) and its cognate ligand CD40L. In this study, I hypothesized that the neutralization of pro-inflammatory cytokines produced downstream of CD40/CD40L interaction would reduce APP processing. I also hypothesized that blocking the binding of different adaptor proteins to CD40 by mutating its cytoplasmic tail would result in significant reduction of the APP metabolites: Aβ, sAPPβ, sAPPα, CTFβ and CTFα. ^ Treatment with CD40L of human embryonic kidney cells over-expressing both APP and CD40 (HEK/APPsw/CD40) significantly increased levels of the cytokine granulocyte macrophage colony stimulating factor (GM-CSF). Neutralizing antibodies against GM-CSF mitigated the CD40L-induced production of Aβ in these cells. Treatment of the HEK/APPsw/CD40 cells with recombinant GM-CSF significantly increased Aβ levels. GM-CSF receptor gene silencing with shRNA significantly reduced Aβ levels to below base line in non-stimulated HEK/APPsw/CD40 cells. Silencing of the GM-CSF receptor also decreased APP endocytosis (therefore reducing the availability of APP to be cleaved in the endosomes). ^ Using CD40 mutants, I show that CD40L can increase levels of Aβ(1-40), Aβ(1-42), sAPPβ, sAPPα and CTFβ independently of TRAF signaling. TRAFs had been shown to be necessary for most CD40/CD40L-dependent signaling. An increase in mature/immature APP ratio after CD40L treatment of CD40wt and CD40-mutant cells was observed, reflecting alterations in APP trafficking. CD4OL treatment of a neuroblastoma cell line over-expressing CTFβ suggested that CD40L affected γ-secretase activity. Inhibition of γ-secretase activity significantly reduced sAPPβ levels in the CD40L treated HEK/APPsw CD40wt and the CD40-mutant cells. The latter suggests CD40/CD40L interaction primarily acts on γ-secretase and affects β-secretase via a positive feedback mechanism. ^ Taken together, the results of this dissertation suggest that GM-CSF operates downstream of CD40/CD40L interaction and that GM-CSF modulates Aβ production by influencing APP trafficking. Moreover, the data presented suggest that CD40/CD40L interaction can modulate APP processing via a mechanism independent of TRAF signaling. ^
Resumo:
Quorum sensing (QS) is a population-dependent signaling process bacteria use to control multiple processes including virulence, critical for establishing infection. There are two major pathways of QS systems. Type 1 is species specific or intra-species communication in which N-acylhomoserine lactones (Gram-negative bacteria) or oligopeptides (Gram-positive bacteria) are employed as signaling molecules (autoinducer one). Type 2 is inter-species communication in which S-4,5-dihydroxy-2,3-pentanedione (DPD) or its borate esters are used as signaling molecules. The DPD is biosynthesized by LuxS enzyme from S-ribosylhomocysteine (SRH). Recent increase in prevalence of bacterial strains resistant to antibiotics emphasizes the need for the development of new generation of antibacterial agents. Interruption of QS by small molecules is one of the viable options as it does not affect bacterial growth but only virulence, leading to less incidence of microbial resistance. Thus, in this work, inhibitors of both N-acylhomoserine lactone (AHL) mediated intra-species and LuxS enzyme, involved in inter-species QS are targeted. The γ-lactam and their reduced cyclic azahemiacetal analogs, bearing the additional alkylthiomethyl substituent, were designed and synthesized targeting AHL mediated QS systems in P. aeruginosa and Vibrio harveyi. The γ-lactams with nonylthio or dodecylthio chains acted as inhibitors of las signaling in P. aeruginosa with moderate potency. The cyclic azahemiacetal with shorter propylthio or hexylthio substituent were found to strongly inhibit both las and rhl signaling in P. aeruginosa at higher concentrations. However, lactam and their azahemiacetal analogs were found to be inactive in V. harveyi QS systems. The 4-aza-S-ribosyl-L-homocysteine (4-aza-SRH) analogs and 2-deoxy-2-substituted-S-ribosyl-L-homocysteine analogs were designed and synthesized targeting Bacillus subtilis LuxS enzyme. The 4-aza-SRH analogs in which oxygen in ribose ring is replaced by nitrogen were further modified at anomeric position to produce pyrrolidine, lactam, nitrone, imine and hemiaminal analogs. Pyrrolidine and lactam analogs which lack anomeric hydroxyl, acted as competitive inhibitors of LuxS enzyme with KI value of 49 and 37 µM respectively. The 2,3-dideoxy lactam analogs were devoid of activity. Such findings attested the significance of hydroxyl groups for LuxS binding and activity. Hemiaminal analog of SRH was found to be a time-dependent inhibitor with IC50 value of 60 µM.