2 resultados para Message
em Digital Commons at Florida International University
Resumo:
Credible endorsers are often used in advertisements. However, there is conflicting evidence on the role source credibility plays in persuasion. Early research found that source credibility affects persuasion when subjects pay attention to the communication. Other research indicates that a credible source enhances persuasion when people do not scrutinize the message claims carefully and thoroughly. This effect is opposite to what was indicated by early research. More recent research indicates that source credibility may affect persuasion when people scrutinize the message claims, but limits this effect to advertisements with certain type of claims (i.e., ambiguous or extreme claims). This dissertation proposes that source credibility might play a broader role during persuasion than suggested by the empirical literature. Source credibility may affect persuasion, at low levels of involvement, by serving as a peripheral cue. It may also affect persuasion, at high involvement, by serving as an argument or biasing elaboration. ^ Each of these possibilities was explored in an experiment using a 3 (source credibility) x 2 (type of claim) x 2 (levels of involvement) full factorial design. The sample consisted of 180 undergraduate students from a major southeastern University. ^ Results indicated that, at high levels of involvement, the credibility of the source affected persuasion. This effect was due to source credibility acting as an argument within the advertisement. This study did not find that source credibility affected persuasion by biasing elaboration, at high involvement, or by serving as a peripheral cue, at low involvement. ^
Resumo:
The increasing nationwide interest in intelligent transportation systems (ITS) and the need for more efficient transportation have led to the expanding use of variable message sign (VMS) technology. VMS panels are substantially heavier than flat panel aluminum signs and have a larger depth (dimension parallel to the direction of traffic). The additional weight and depth can have a significant effect on the aerodynamic forces and inertial loads transmitted to the support structure. The wind induced drag forces and the response of VMS structures is not well understood. Minimum design requirements for VMS structures are contained in the American Association of State Highway Transportation Officials Standard Specification for Structural Support for Highway Signs, Luminaires, and Traffic Signals (AASHTO Specification). However the Specification does not take into account the prismatic geometry of VMS and the complex interaction of the applied aerodynamic forces to the support structure. In view of the lack of code guidance and the limited number research performed so far, targeted experimentation and large scale testing was conducted at the Florida International University (FIU) Wall of Wind (WOW) to provide reliable drag coefficients and investigate the aerodynamic instability of VMS. A comprehensive range of VMS geometries was tested in turbulence representative of the high frequency end of the spectrum in a simulated suburban atmospheric boundary layer. The mean normal, lateral and vertical lift force coefficients, in addition to the twisting moment coefficient and eccentricity ratio, were determined using the measured data for each model. Wind tunnel testing confirmed that drag on a prismatic VMS is smaller than the 1.7 suggested value in the current AASHTO Specification (2013). An alternative to the AASHTO Specification code value is presented in the form of a design matrix. Testing and analysis also indicated that vortex shedding oscillations and galloping instability could be significant for VMS signs with a large depth ratio attached to a structure with a low natural frequency. The effect of corner modification was investigated by testing models with chamfered and rounded corners. Results demonstrated an additional decrease in the drag coefficient but a possible Reynolds number dependency for the rounded corner configuration.