2 resultados para Mercado industrial (B to B)

em Digital Commons at Florida International University


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This research addresses the problem of cost estimation for product development in engineer-to-order (ETO) operations. An ETO operation starts the product development process with a product specification and ends with delivery of a rather complicated, highly customized product. ETO operations are practiced in various industries such as engineering tooling, factory plants, industrial boilers, pressure vessels, shipbuilding, bridges and buildings. ETO views each product as a delivery item in an industrial project and needs to make an accurate estimation of its development cost at the bidding and/or planning stage before any design or manufacturing activity starts. ^ Many ETO practitioners rely on an ad hoc approach to cost estimation, with use of past projects as reference, adapting them to the new requirements. This process is often carried out on a case-by-case basis and in a non-procedural fashion, thus limiting its applicability to other industry domains and transferability to other estimators. In addition to being time consuming, this approach usually does not lead to an accurate cost estimate, which varies from 30% to 50%. ^ This research proposes a generic cost modeling methodology for application in ETO operations across various industry domains. Using the proposed methodology, a cost estimator will be able to develop a cost estimation model for use in a chosen ETO industry in a more expeditious, systematic and accurate manner. ^ The development of the proposed methodology was carried out by following the meta-methodology as outlined by Thomann. Deploying the methodology, cost estimation models were created in two industry domains (building construction and the steel milling equipment manufacturing). The models are then applied to real cases; the cost estimates are significantly more accurate than the actual estimates, with mean absolute error rate of 17.3%. ^ This research fills an important need of quick and accurate cost estimation across various ETO industries. It differs from existing approaches to the problem in that a methodology is developed for use to quickly customize a cost estimation model for a chosen application domain. In addition to more accurate estimation, the major contributions are in its transferability to other users and applicability to different ETO operations. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This research is motivated by the need for considering lot sizing while accepting customer orders in a make-to-order (MTO) environment, in which each customer order must be delivered by its due date. Job shop is the typical operation model used in an MTO operation, where the production planner must make three concurrent decisions; they are order selection, lot size, and job schedule. These decisions are usually treated separately in the literature and are mostly led to heuristic solutions. The first phase of the study is focused on a formal definition of the problem. Mathematical programming techniques are applied to modeling this problem in terms of its objective, decision variables, and constraints. A commercial solver, CPLEX is applied to solve the resulting mixed-integer linear programming model with small instances to validate the mathematical formulation. The computational result shows it is not practical for solving problems of industrial size, using a commercial solver. The second phase of this study is focused on development of an effective solution approach to this problem of large scale. The proposed solution approach is an iterative process involving three sequential decision steps of order selection, lot sizing, and lot scheduling. A range of simple sequencing rules are identified for each of the three subproblems. Using computer simulation as the tool, an experiment is designed to evaluate their performance against a set of system parameters. For order selection, the proposed weighted most profit rule performs the best. The shifting bottleneck and the earliest operation finish time both are the best scheduling rules. For lot sizing, the proposed minimum cost increase heuristic, based on the Dixon-Silver method performs the best, when the demand-to-capacity ratio at the bottleneck machine is high. The proposed minimum cost heuristic, based on the Wagner-Whitin algorithm is the best lot-sizing heuristic for shops of a low demand-to-capacity ratio. The proposed heuristic is applied to an industrial case to further evaluate its performance. The result shows it can improve an average of total profit by 16.62%. This research contributes to the production planning research community with a complete mathematical definition of the problem and an effective solution approach to solving the problem of industry scale.