2 resultados para Membrane transport
em Digital Commons at Florida International University
Resumo:
Prediction of arsenic transport and transformation in soil environment requires understanding the transport mechanisms and proper estimation of arsenic partitioning tong all three phases in soil/aquifer systems: mobile colloids, mobile soil solution, and immobile soil solids. The primary purpose of this research is to study natural dissolved organic matter (DOM)/colloid-facilitated transport of arsenic and understand the role of soil derived carriers in the transport and transformation of both inorganic and organoarsenicals in soils. ^ DOM/colloid facilitated arsenic transport and transformation in porous soil media were investigated using a set of experimental approaches including batch experiment, equilibrium membrane dialysis experiment and column experiment. Soil batch experiment was applied to investigate arsenic adsorption on a variety of soils with different characteristics; Equilibrium membrane dialysis was employed to determine the 'free' and 'colloid-bound/complexed' arsenic in water extracts of chosen soils; Column experiments were also set up in the laboratory to simulate arsenic transport and transformation through golf course soils in the presence and absence of soil-derived dissolved substances. ^ The experimental results revealed that organic matter amendments effectively reduced soil arsenic adsorption. The majority of arsenic present in the soil extracts was associated with small substances of molecular weight (MW) between 500 and 3,500 Da, Only a small fraction of arsenic was associated with higher MW substances (MW > 3,500 Da), which was operationally defined as colloidal part in this study. The association of arsenic and DOM in the soil extracts strongly affected arsenic bioavailability, arsenic transport and transformation in soils. The results of column experiments revealed arsenic complicated behavior with various processes occurring in soils studied, including: soil arsenic' adsorption, facilitated arsenic transportation by dissolved substances presented in soil extracts and microorganisms involved arsenic species transformation. ^ Soil organic matter amendments effectively reduce soil arsenic adsorption capability either by scavenging 'soil arsenic adsorption sites or by interactions between arsenic species and dissolved organic chemicals in soil solution. Close attention must be paid for facilitated arsenic transport by dissolved substances presented in soil solution and microorganisms involved arsenic species transformation in arsenic-contaminated soils.^
Resumo:
A two-phase three-dimensional computational model of an intermediate temperature (120--190°C) proton exchange membrane (PEM) fuel cell is presented. This represents the first attempt to model PEM fuel cells employing intermediate temperature membranes, in this case, phosphoric acid doped polybenzimidazole (PBI). To date, mathematical modeling of PEM fuel cells has been restricted to low temperature operation, especially to those employing Nafion ® membranes; while research on PBI as an intermediate temperature membrane has been solely at the experimental level. This work is an advancement in the state of the art of both these fields of research. With a growing trend toward higher temperature operation of PEM fuel cells, mathematical modeling of such systems is necessary to help hasten the development of the technology and highlight areas where research should be focused.^ This mathematical model accounted for all the major transport and polarization processes occurring inside the fuel cell, including the two phase phenomenon of gas dissolution in the polymer electrolyte. Results were presented for polarization performance, flux distributions, concentration variations in both the gaseous and aqueous phases, and temperature variations for various heat management strategies. The model predictions matched well with published experimental data, and were self-consistent.^ The major finding of this research was that, due to the transport limitations imposed by the use of phosphoric acid as a doping agent, namely low solubility and diffusivity of dissolved gases and anion adsorption onto catalyst sites, the catalyst utilization is very low (∼1--2%). Significant cost savings were predicted with the use of advanced catalyst deposition techniques that would greatly reduce the eventual thickness of the catalyst layer, and subsequently improve catalyst utilization. The model also predicted that an increase in power output in the order of 50% is expected if alternative doping agents to phosphoric acid can be found, which afford better transport properties of dissolved gases, reduced anion adsorption onto catalyst sites, and which maintain stability and conductive properties at elevated temperatures.^