5 resultados para Mechanistic studies

em Digital Commons at Florida International University


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gasoline oxygenates (MTBE, methyl tert-butyl ether; DIPE, di-isopropyl ether; ETBE, ethyl tert-butyl ether; TAME, tert-amyl ether) are added to gasoline to boost octane and enhance combustion. The combination of large scale use, high water solubility and only minor biodegradability has now resulted in a significant gasoline oxygenate contamination occurring in surface, ground, and drinking water systems. Combination of hydroxyl radical formation and the pyrolytic environment generated by ultrasonic irradiation (665 kHz) leads to the rapid degradation of MTBE and other gasoline oxygenates in aqueous media. ^ The presence of oxygen promotes the degradation processes by rapid reaction with carbon centered radicals indicating radical processes involving O 2 are significant pathways. A number of the oxidation products were identified. The formation of products (alcohols, ketones, aldehydes, esters, peroxides, etc) could be rationalized by mechanisms which involve hydrogen abstraction by OH radical and/or pyrolysis to form carboncentered radicals which react with oxygen and follow standard oxidation chain processes. ^ The reactions of N-substituted R-triazolinediones (RTAD; R = CH 3 or phenyl) have attracted considerable interest because they exhibit a number of unusual mechanistic characteristics that are analogous to the reactions of singlet oxygen (1O2) and offer an easy way to provide C-N bond(s) formation. The reactions of triazolinedione with olefins have been widely studied and aziridinium imides are generally accepted to be the reactive intermediates. ^ We observed the rapid formation of an unusual intermediate upon mixing tetracyclopropylethylene with 4-methyl-1,2,4-triazoline-3,5-dione in CDCl 3. Detailed characterization by NMR (proton, 13C, 2-D NMRs) indicates the intermediate is 5,5,6,6-tetracyclopropyl-3-methyl-5,6-dihydro-oxazolo[3,2- b][1,2,4]-triazolium-2-olate. Such products are extremely rare and have not been studied. Upon warming the intermediate is converted to 2 + 2 diazetidine (major) and ene product (minor). ^ To further explore the kinetics and dynamics of the reaction activation energies were obtained using Arrhenius plots. Activation energies for the formation of the intermediate from reactants, and 2+2 adduct from the intermediate were determined as 7.48 kcal moll and 19.8 kcal mol−1 with their pre-exponential values of 2.24 × 105 dm 3 mol−1 sec−1 and 2.75 × 108 sec−1, respectively, meaning net slow reactions because of low pre-exponential values caused by steric hindrance. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The increased occurrence of cyanobacteria (blue-green algae) blooms and the production of associated cyanotoxins have presented a threat to drinking water sources. Among the most common types of cyanotoxins found in potable water are microcystins (MCs), a family of cyclic heptapeptides containing substrates. MCs are strongly hepatotoxic and known to initiate tumor promoting activity. The presence of sub-lethal doses of MCs in drinking water is implicated as one of the key risk factors for an unusually high occurrence of primary liver cancer. ^ A variety of traditional water treatment methods have been attempted for the removal of cyanotoxins, but with limited success. Advanced Oxidation Technologies (AOTs) are attractive alternatives to traditional water treatments. We have demonstrated ultrasonic irradiation and UV/H2O2 lead to the degradation of cyanotoxins in drinking water. These studies demonstrate AOTs can effectively degrade MCs and their associated toxicity is dramatically reduced. We have conducted detailed studies of different degradation pathways of MCs and conclude that the hydroxyl radical is responsible for a significant fraction of the observed degradation. Results indicate preliminary products of the sonolysis of MCs are due to the hydroxyl radical attack on the benzene ring and substitution and cleavage of the diene of the Adda peptide residue. AOTs are attractive methods for treatment of cyanotoxins in potable water supplies. ^ The photochemical transformation of MCs is important in the environmental degradation of MCs. Previous studies implicated singlet oxygen as a primary oxidant in the photochemical transformation of MCs. Our results indicate that singlet oxygen predominantly leads to degradation of the phycocyanin, pigments of blue green algae, hence reducing the degradation of MCs. The predominant process involves isomerization of the diene (6E to 6Z) in the Adda side chain via photosensitized isomerization involving the photoexcited phycocyanin. Our results indicate that photosensitized processes play a key role in the environmental fate and elimination of MCs in the natural waters. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Males and age group 1 to 5 years show a much higher risk for childhood acute lymphoblastic leukemia (ALL). We performed a case-only genome-wide association study (GWAS), using the Illumina Infinium HumanCoreExome Chip, to unmask gender- and age-specific risk variants in 240 non-Hispanic white children with ALL recruited at Texas Children’s Cancer Center, Houston, Texas. Besides statistically most significant results, we also considered results that yielded the highest effect sizes. Existing experimental data and bioinformatic predictions were used to complement results, and to examine the biological significance of statistical results. Our study identified novel risk variants for childhood ALL. The SNP, rs4813720 (RASSF2), showed the statistically most significant gender-specific associations (P < 2 x 10-6). Likewise, rs10505918 (SOX5) yielded the lowest P value (P < 1 x 10-5) for age-specific associations, and also showed the statistically most significant association with age-at-onset (P < 1 x 10-4). Two SNPs, rs12722042 and 12722039, from the HLA-DQA1 region yielded the highest effect sizes (odds ratio (OR) = 15.7; P = 0.002) for gender-specific results, and the SNP, rs17109582 (OR = 12.5; P = 0.006), showed the highest effect size for age-specific results. Sex chromosome variants did not appear to be involved in gender-specific associations. The HLA-DQA1 SNPs belong to DQA1*01:07and confirmed previously reported male-specific association with DQA1*01:07. Twenty one of the SNPs identified as risk markers for gender- or age-specific associations were located in the transcription factor binding sites and 56 SNPs were non-synonymous variants, likely to alter protein function. Although bioinformatic analysis did not implicate a particular mechanism for gender- and age-specific associations, RASSF2 has an estrogen receptor-alpha binding site in its promoter. The unknown mechanisms may be due to lack of interest in gender- and age-specificity in associations. These results provide a foundation for further studies to examine the gender- and age-differential in childhood ALL risk. Following replication and mechanistic studies, risk factors for one gender or age group may have a potential to be used as biomarkers for targeted intervention for prevention and maybe also for treatment.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Males and age group 1 to 5 years show a much higher risk for childhood acute lymphoblastic leukemia (ALL). We performed a case-only genome-wide association study (GWAS), using the Illumina Infinium HumanCoreExome Chip, to unmask gender- and age-specific risk variants in 240 non-Hispanic white children with ALL recruited at Texas Children’s Cancer Center, Houston, Texas. Besides statistically most significant results, we also considered results that yielded the highest effect sizes. Existing experimental data and bioinformatic predictions were used to complement results, and to examine the biological significance of statistical results. ^ Our study identified novel risk variants for childhood ALL. The SNP, rs4813720 (RASSF2), showed the statistically most significant gender-specific associations (P < 2 x 10-6). Likewise, rs10505918 (SOX5) yielded the lowest P value (P < 1 x 10-5 ) for age-specific associations, and also showed the statistically most significant association with age-at-onset (P < 1 x 10-4). Two SNPs, rs12722042 and 12722039, from the HLA-DQA1 region yielded the highest effect sizes (odds ratio (OR) = 15.7; P = 0.002) for gender-specific results, and the SNP, rs17109582 (OR = 12.5; P = 0.006), showed the highest effect size for age-specific results. Sex chromosome variants did not appear to be involved in gender-specific associations. ^ The HLA-DQA1 SNPs belong to DQA1*01:07and confirmed previously reported male-specific association with DQA1*01:07. Twenty one of the SNPs identified as risk markers for gender- or age-specific associations were located in the transcription factor binding sites and 56 SNPs were non-synonymous variants, likely to alter protein function. Although bioinformatic analysis did not implicate a particular mechanism for gender- and age-specific associations, RASSF2 has an estrogen receptor-alpha binding site in its promoter. The unknown mechanisms may be due to lack of interest in gender- and age-specificity in associations. These results provide a foundation for further studies to examine the gender- and age-differential in childhood ALL risk. Following replication and mechanistic studies, risk factors for one gender or age group may have a potential to be used as biomarkers for targeted intervention for prevention and maybe also for treatment.^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

I. The target molecules are classified as 1-aryl 2-cyclopropyl substituted ethylene. In the ground state, these molecules have a number of conformers, which are in equilibrium through rotation about single bonds. Once excited, the conformers have fixed conformation and are no longer in equilibrium and can be distinguished by their UV-vis as well as fluorescence spectra. The synthetic strategy involves standard steps. Both 2-methylanthracene and 2-methylnaphthalene were brominated using N-bromosuccinimide to give the bromomethyl adduct, which then was reacted with triphenylphosphine to form the phosphonium salt. This was followed by the formation of the phosphorus ylide, which upon treatment with cyclopropanecarboxaldehyde gave the product.^ II. The degradation of three aliphatic haloethers: bis-(2-chloroethyl) ether, bis-(2-chloroisopropyl) ether, and bis-(2-chloroethoxy)methane and two aromatic haloethers: 4-chlorodiphenyl ether and 4-bromodiphenyl ether was studied. Product studies have been conducted on the titanium dioxide photocatalysis of these compounds including mass balance, monitoring and identifying intermediates to establish the reaction pathways to deduce a mechanism for their degradation. The extent of mineralization was determined from the measurement of halogen anion (Cl$\sp-$/Br$\sp-$) as well as total organic carbon. The relative rates of disappearance of the individual haloethers appear to be related to the hydrophobic character of the given compound. Reaction mechanisms involving hydroxyl radical are proposed to explain the observed results. ^