4 resultados para Measurement theory

em Digital Commons at Florida International University


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Clusters are aggregations of atoms or molecules, generally intermediate in size between individual atoms and aggregates that are large enough to be called bulk matter. Clusters can also be called nanoparticles, because their size is on the order of nanometers or tens of nanometers. A new field has begun to take shape called nanostructured materials which takes advantage of these atom clusters. The ultra-small size of building blocks leads to dramatically different properties and it is anticipated that such atomically engineered materials will be able to be tailored to perform as no previous material could.^ The idea of ionized cluster beam (ICB) thin film deposition technique was first proposed by Takagi in 1972. It was based upon using a supersonic jet source to produce, ionize and accelerate beams of atomic clusters onto substrates in a vacuum environment. Conditions for formation of cluster beams suitable for thin film deposition have only recently been established following twenty years of effort. Zinc clusters over 1,000 atoms in average size have been synthesized both in our lab and that of Gspann. More recently, other methods of synthesizing clusters and nanoparticles, using different types of cluster sources, have come under development.^ In this work, we studied different aspects of nanoparticle beams. The work includes refinement of a model of the cluster formation mechanism, development of a new real-time, in situ cluster size measurement method, and study of the use of ICB in the fabrication of semiconductor devices.^ The formation process of the vaporized-metal cluster beam was simulated and investigated using classical nucleation theory and one dimensional gas flow equations. Zinc cluster sizes predicted at the nozzle exit are in good quantitative agreement with experimental results in our laboratory.^ A novel in situ real-time mass, energy and velocity measurement apparatus has been designed, built and tested. This small size time-of-flight mass spectrometer is suitable to be used in our cluster deposition systems and does not suffer from problems related to other methods of cluster size measurement like: requirement for specialized ionizing lasers, inductive electrical or electromagnetic coupling, dependency on the assumption of homogeneous nucleation, limits on the size measurement and non real-time capability. Measured ion energies using the electrostatic energy analyzer are in good accordance with values obtained from computer simulation. The velocity (v) is measured by pulsing the cluster beam and measuring the time of delay between the pulse and analyzer output current. The mass of a particle is calculated from m = (2E/v$\sp2).$ The error in the measured value of background gas mass is on the order of 28% of the mass of one N$\sb2$ molecule which is negligible for the measurement of large size clusters. This resolution in cluster size measurement is very acceptable for our purposes.^ Selective area deposition onto conducting patterns overlying insulating substrates was demonstrated using intense, fully-ionized cluster beams. Parameters influencing the selectivity are ion energy, repelling voltage, the ratio of the conductor to insulator dimension, and substrate thickness. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lutein is a principal constituent of the human macular pigment. This study is composed of two projects. The first studies the conformational geometries of lutein and its potential adaptability in biological systems. The second is a study of the response of human subjects to lutein supplements. Using semi-empirical parametric method 3 (PM3) and density functional theory with the B3LYP/6-31G* basis set, the relative energies of s- cis conformers of lutein were determined. All 512 s-cis conformers were calculated with PM3. A smaller, representative group was also studied using density functional theory. PM3 results were correlated systematically to B3LYP values and this enables the results to be calibrated. The relative energies of the conformers range from 1-30 kcal/mole, and many are dynamically accessible at normal temperatures. Four commercial formulations containing lutein were studied. The serum and macular pigment (MP) responses of human subjects to these lutein supplements with doses of 9 or 20 mg/day were measured, relative to a placebo, over a six month period. In each instance, lutein levels in serum increased and correlated with MP increases. The results demonstrate that responses are significantly dependent upon formulation and that components other than lutein have an important influence serum response.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The theoretical foundation of this study comes from the significant recurrence throughout the leadership literature of two distinct behaviors, task orientation and relationship orientation. Task orientation and relationship orientation are assumed to be generic behaviors, which are universally observed and applied in organizations, even though they may be uniquely enacted in organizations across cultures. The lack of empirical evidence supporting these assumptions provided the impetus to hypothetically develop and empirically confirm the universal application of task orientation and relationship orientation and the generalizability of their measurement in a cross-cultural setting. Task orientation and relationship orientation are operationalized through consideration and initiation of structure, two well-established theoretical leadership constructs. Multiple-group mean and covariance structures (MACS) analyses are used to simultaneously validate the generalizability of the two hypothesized constructs across the 12 cultural groups and to assess whether the similarities and differences discovered are measurement and scaling artifacts or reflect true cross-cultural differences. The data were collected by the author and others as part of a larger international research project. The data are comprised of 2341 managers from 12 countries/regions. The results provide compelling evidence that task orientation and relationship orientation, reliably and validly operationalized through consideration and initiation of structure, are generalizable across the countries/regions sampled. But the results also reveal significant differences in the perception of these behaviors, suggesting that some aspects of task orientation and relationship orientation are strongly affected by cultural influences. These (similarities and) differences reflect directly interpretable, error-free effects among the constructs at the behavioral level. Thus, task orientation and relationship orientation can demonstrate different relations among cultures, yet still be defined equivalently across the 11 cultures studied. The differences found in this study are true differences and may contain information about cultural influences characterizing each cultural context (i.e. group). The nature of such influences should be examined before the results can be meaningfully interpreted. To examine the effects of cultural characteristics on the constructs, additional hypotheses on the constructs' latent parameters can be tested across groups. Construct-level tests are illustrated in hypothetical examples in light of the study's results. The study contributes significantly to the theoretical understanding of the nature and generalizability of psychological constructs. The theoretical and practical implications of embedding context into a unified theory of task orientated and relationship oriented leader behavior are proposed. Limitations and contributions are also discussed. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Microelectronic systems are multi-material, multi-layer structures, fabricated and exposed to environmental stresses over a wide range of temperatures. Thermal and residual stresses created by thermal mismatches in films and interconnections are a major cause of failure in microelectronic devices. Due to new device materials, increasing die size and the introduction of new materials for enhanced thermal management, differences in thermal expansions of various packaging materials have become exceedingly important and can no longer be neglected. X-ray diffraction is an analytical method using a monochromatic characteristic X-ray beam to characterize the crystal structure of various materials, by measuring the distances between planes in atomic crystalline lattice structures. As a material is strained, this interplanar spacing is correspondingly altered, and this microscopic strain is used to determine the macroscopic strain. This thesis investigates and describes the theory and implementation of X-ray diffraction in the measurement of residual thermal strains. The design of a computer controlled stress attachment stage fully compatible with an Anton Paar heat stage will be detailed. The stress determined by the diffraction method will be compared with bimetallic strip theory and finite element models.