3 resultados para Marsh plants

em Digital Commons at Florida International University


Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper demonstrates the usefulness of fluorescence techniques for long-term monitoring and assessment of the dynamics (sources, transport and fate) of chromophoric dissolved organic matter (CDOM) in highly compartmentalized estuarine regions with non-point water sources. Water samples were collected monthly from a total of 73 sampling stations in the Florida Coastal Everglades (FCE) estuaries during 2001 and 2002. Spatial and seasonal variability of CDOM characteristics were investigated for geomorphologically distinct sub-regions within Florida Bay (FB), the Ten Thousand Islands (TTI), and Whitewater Bay (WWB). These variations were observed in both quantity and quality of CDOM. TOC concentrations in the FCE estuaries were generally higher during the wet season (June–October), reflecting high freshwater loadings from the Everglades in TTI, and a high primary productivity of marine biomass in FB. Fluorescence parameters suggested that the CDOM in FB is mainly of marine/microbial origin, while for TTI and WWB a terrestrial origin from Everglades marsh plants and mangroves was evident. Variations in CDOM quality seemed mainly controlled by tidal exchange/mixing of Everglades freshwater with Florida Shelf waters, tidally controlled releases of CDOM from fringe mangroves, primary productivity of marine vegetation in FB and diagenetic processes such as photodegradation (particularly for WWB). The source and dynamics of CDOM in these subtropical estuaries is complex and found to be influenced by many factors including hydrology, geomorphology, vegetation cover, landuse and biogeochemical processes. Simple, easy to measure, high sample throughput fluorescence parameters for surface waters can add valuable information on CDOM dynamics to long-term water quality studies which can not be obtained from quantitative determinations alone.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Water samples were collected from rivers and estuarine environments within the Florida Coastal Everglades (FCE) ecosystem, USA, and ultrafiltered dissolved organic matter (UDOM; 1 kDa) was isolated for characterization of its source, bioavailability and diagenetic state. A combination of techniques, including 15N cross-polarization magic angle spinning nuclear magnetic resonance (15N CPMAS NMR) and X-ray photoelectron spectroscopy (XPS), were used to analyze the N components of UDOM. The concentrations and compositions of total hydrolysable amino acids (HAAs) were analyzed to estimate UDOM bioavailability and diagenetic state. Optical properties (UV–visible and fluorescence) and the stable isotope ratios of C and N were measured to assess the source and dynamics of UDOM. Spectroscopic analyses consistently showed that the major N species of UDOM are in amide form, but significant contributions of aromatic-N were also observed. XPS showed a very high pyridinic-N concentration in the FCE–UDOM (21.7 ± 2.7%) compared with those in other environments. The sources of this aromatic-N are unclear, but could include soot and charred materials from wild fires. Relatively high total HAA concentrations (4 ± 2% UDOC or 27 ± 4% UDON) are indicative of bioavailable components, and HAA compositions suggest FCE–UDOM has not undergone extensive diagenetic processing. These observations can be attributed to the low microbial activity and a continuous supply of fresh UDOM in this oligotrophic ecosystem. Marsh plants appear to be the dominant source of UDOM in freshwater regions of the FCE, whereas seagrasses and algae are the dominant sources of UDOM in Florida Bay. This study demonstrates the utility of a multi-technique and multi-proxy approach to advance our understanding of DON biogeochemistry.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dissolved organic matter (DOM) is a complex mixture of organic compounds and represents the largest reservoirs of carbon (C) on earth. Particulate organic matter (POM) is another important carbon component in C cycling and controls a variety of biogeochemical processes. Estuaries, as important interfaces between land and ocean, play important roles in retaining and transforming such organic matter (OM) and serve as both sources and sinks of DOM and POM. There is a diverse array of both autochthonous and allochthonous OM sources in wetland/estuarine ecosystems. A comprehensive study on the sources, transformation and fate of OM in such ecosystems is essential in advancing our understanding of C cycling and better constraining the global C budget. In this work, DOM characteristics were investigated in different estuaries. Dissolved organic matter source strengths and dynamics were assessed in a seagrass-dominated subtropical estuarine lagoon. DOM dynamics controlled by hydrology and seagrass primary productivity were confirmed, and the primary source of DOM was quantified using the combination of excitation emission matrix fluorescence with parallel factor analysis (EEM-PARAFAC) and stable C isotope analysis. Seagrass can contribute up to 72% of the DOM in the study area. The spatial and temporal variation of DOM dynamics was also studied in a freshwated dominated estuary fringed with extensive salt marshes. The data showed that DOM was primarily derived from freshwater marshes and controlled by hydrology while salt marsh plants play a significant role in structuring the distribution patterns of DOM quality and quantity. The OM dynamics was also investigated in a mangrove-dominate estuary and a comparative study was conducted between the DOM and POM pools. The results revealed both similarity and dissimilarity in DOM and POM composition. The dynamics of both OM pools are largely uncoupled as a result of source differences. Fringe mangrove swamps are suggested to export similar amounts of DOM and POM and should be considered as an important source in coastal C budgets. Lastly, chemical characterizations were conducted on the featured fluorescence component in OM in an attempt to better understand the composition and origins of the specific PARAFAC component. The traditionally defined ‘protein-like’ fluorescence was found to contain both proteinaceous and phenolic compounds, suggesting that the application of this parameter as a proxy for amino acid content and bioavailability may be limited.