22 resultados para Management of water and soil
em Digital Commons at Florida International University
Resumo:
Low and high water periods create contrasting challenges for trees inhabiting periodically flooded wetlands. Low to moderate flood durations and frequencies may bring nutrient subsidies, while greater hydroperiods can be energetically stressful because of oxygen deficiency. We tested the hypothesis that hydroperiod affects the growth of mangrove seedlings and saplings in a greenhouse experiment by varying flood duration while keeping salinity and soil fertility constant. We measured the growth of mangrove trees along a hydroperiod gradient over a two-year period by tracking fine-scale diameter increment. Greenhouse growth studies indicated that under a full range of annual flood durations (0–8760 h/year), hydroperiod alone exerted a significant influence on growth for one species, Laguncularia racemosa, when flooding was imposed for two growing seasons. Field evaluations, on the other hand, indicated that increased flood duration may provide nutrient subsidies for tree growth. Diameter growth was related curvilinearly to site hydroperiod, including flood duration and frequency, as well as to salinity and soil fertility. An analysis of soil physico-chemical parameters suggests that phosphorus fertility, which was also linked directly to hydroperiod, is likely to influence growth on south Florida mangrove sites. The physical removal of phosphorus by greater flood frequencies from upland sources and/or addition of phosphorus from tidal flooding balanced against increased soil aeration and reduced water deficits may be an extremely important growth determinant for south Florida mangroves.
Resumo:
OF TAFFETA AND SOIL is a collection of poetry unified through images of Argentinean and Floridian soil, flora, and fauna, and by themes of geographic and emotional dislocation, memory, and the quest for home. These images are brought forth in lyrical poems that question the growth and settling of a romantic partnership, domestic turmoil and resolution, and the constant tension between self and community. Mostly written in free verse, the collection also utilizes forms such as prose poem, haiku, and sonnet, for more formal unity. Section one chronicles and explores a romantic relationship through attraction, passion, disappointment, and self-awareness. Section two is a long poem that centers on the speaker’s continuous struggle to come to terms with her present adult life while still remembering and idealizing a homeland. Finally, the collection ends with two sections that work toward self-acceptance, forgiveness, and evolution via community, family, travel and nature.
Resumo:
This project studied the frequency and of water contamination at the source, during transportation, and at home to determine the causes of contamination and its impact on the health of children aged 0 to 5 years. The methods used were construction of the infrastructure for three sources of potable water, administration of a questionnaire about socioeconomic status and sanitation behavior, anthropometric measurement of children, and analysis of water and feces. The contamination, first thought to be only a function of rainfall, turned out to be a very complex phenomenon. Water in homes was contaminated (43.4%) with more than 1100 total coliforms/100 ml due to the use of unclean utensils to transport and store water. This socio-economic and cultural problem should be ad- dressed with health education about sanitation, The latrines (found in 43.8% of families) presented a double-edged problem. The extremely high population density reduced the surface area of land per family, which resulted in a severe nutritional deficit (15% of the children) affecting mainly young children, rendering them more susceptible to diarrhea (three episodes/child/year).
Resumo:
We examined interannual variation in soil properties from wetlands occurring in adjacent drainage basins from the southeastern Everglades. Triplicate 10-cm soil cores were collected, homogenized, and analyzed during the wet season 2006–2010 from five freshwater sawgrass wetland marshes and three estuarine mangrove forests. Soil bulk density from the Taylor Slough basin ranged from 0.15 gm-cm−3 to 0.5 gm-cm−3, was higher than from the Panhandle basin every year, and generally increased throughout the study period. Organic matter as a percent loss on ignition ranged from 7 % to 12 % from freshwater marshes and from 13 % to 56 % from estuarine mangroves. Extractable iron in soils was similar among drainage basins and wetland types, typically ranging from 0.6 to 2.0 g Fe kg−1. In contrast, inorganic sulfur was on average over four times higher from estuarine soils relative to freshwater, and was positively correlated with soil organic matter. Finally total soil phosphorus (P) was lower in freshwater soils relative to estuarine soils (84 ± 5 versus 326 ± 32 mg P kg−1). Total P from the freshwater marshes in the Panhandle basin rose throughout the study period from 54.7 ± 8.4 to 107 ± 17 mg P kg−1, a possible outcome of differences in water management between drainage basins.
Resumo:
This dissertation consists of three essays on different aspects of water management. The first essay focuses on the sustainability of freshwater use by introducing the notion that altruistic parents do bequeath economic assets for their offspring. Constructing a two-period, over-lapping generational model, an optimal ratio of consumption and pollution for old and young generations in each period is determined. Optimal levels of water consumption and pollution change according to different parameters, such as, altruistic degree, natural recharge rate, and population growth. The second essay concerns water sharing between countries in the case of trans-boundary river basins. The paper recognizes that side payments fail to forge water-sharing agreement among the international community and that downstream countries have weak bargaining power. An interconnected game approach is developed by linking the water allocation issue with other non-water issues such as trade or border security problems, creating symmetry between countries in bargaining power. An interconnected game forces two countries to at least partially cooperate under some circumstances. The third essay introduces the concept of virtual water (VW) into a traditional international trade model in order to estimate water savings for a water scarce country. A two country, two products and two factors trade model is developed, which includes not only consumers and producer's surplus, but also environmental externality of water use. The model shows that VW trade saves water and increases global and local welfare. This study should help policy makers to design appropriate subsidy or tax policy to promote water savings especially in water scarce countries.^
Resumo:
Total soil-mercury and phosphorus concentrations were determined in 64 sites in the southern half of Water Conservation Area 3A, an area of approximately 500 km2 . Surface soil-Hg concentrations ranged from 117 to 300 ng-g-1;total phosphorus concentrations range from 350 to 850 pg~g-1. No consistent north-south or east-west trends are found in the mercury or phosphorus surface concentrations when they are normalized to soil bulk density. Nine sites were used for the determination of the vertical distribution of soilmercury. Vertical profiles of soil-Hg revealed decreasing concentrations with depth and correlated well with phosphorus in soil profiles. Mercury concentrations in soil profiles may be interpreted as an increase in the rate of deposition of mercury in the region in recent decades and/or as postdepositionalmobilization of mercury to surface layers.
Resumo:
This dissertation consists of three essays on different aspects of water management. The first essay focuses on the sustainability of freshwater use by introducing the notion that altruistic parents do bequeath economic assets for their offspring. Constructing a two-period, over-lapping generational model, an optimal ratio of consumption and pollution for old and young generations in each period is determined. Optimal levels of water consumption and pollution change according to different parameters, such as, altruistic degree, natural recharge rate, and population growth. The second essay concerns water sharing between countries in the case of trans-boundary river basins. The paper recognizes that side payments fail to forge water-sharing agreement among the international community and that downstream countries have weak bargaining power. An interconnected game approach is developed by linking the water allocation issue with other non-water issues such as trade or border security problems, creating symmetry between countries in bargaining power. An interconnected game forces two countries to at least partially cooperate under some circumstances. The third essay introduces the concept of virtual water (VW) into a traditional international trade model in order to estimate water savings for a water scarce country. A two country, two products and two factors trade model is developed, which includes not only consumers and producer’s surplus, but also environmental externality of water use. The model shows that VW trade saves water and increases global and local welfare. This study should help policy makers to design appropriate subsidy or tax policy to promote water savings especially in water scarce countries.
Resumo:
The Mara River Basin (MRB) is endowed with pristine biodiversity, socio-cultural heritage and natural resources. The purpose of my study is to develop and apply an integrated water resource allocation framework for the MRB based on the hydrological processes, water demand and economic factors. The basin was partitioned into twelve sub-basins and the rainfall runoff processes was modeled using the Soil and Water Assessment Tool (SWAT) after satisfactory Nash-Sutcliff efficiency of 0.68 for calibration and 0.43 for validation at Mara Mines station. The impact and uncertainty of climate change on the hydrology of the MRB was assessed using SWAT and three scenarios of statistically downscaled outputs from twenty Global Circulation Models. Results predicted the wet season getting more wet and the dry season getting drier, with a general increasing trend of annual rainfall through 2050. Three blocks of water demand (environmental, normal and flood) were estimated from consumptive water use by human, wildlife, livestock, tourism, irrigation and industry. Water demand projections suggest human consumption is expected to surpass irrigation as the highest water demand sector by 2030. Monthly volume of water was estimated in three blocks of current minimum reliability, reserve (>95%), normal (80–95%) and flood (40%) for more than 5 months in a year. The assessment of water price and marginal productivity showed that current water use hardly responds to a change in price or productivity of water. Finally, a water allocation model was developed and applied to investigate the optimum monthly allocation among sectors and sub-basins by maximizing the use value and hydrological reliability of water. Model results demonstrated that the status on reserve and normal volumes can be improved to ‘low’ or ‘moderate’ by updating the existing reliability to meet prevailing demand. Flow volumes and rates for four scenarios of reliability were presented. Results showed that the water allocation framework can be used as comprehensive tool in the management of MRB, and possibly be extended similar watersheds.
Resumo:
The maintenance of species richness is often a priority in the management of nature reserves, where consumptive use of resources is generally prohibited. The purpose of this research was to improve management by understanding the vegetation dynamics in the lowlands of Nepal. The objectives were to determine vegetation associations in relation to environments and human-induced disturbances that affect vegetation dynamics on floodplains, where upstream barrages had altered flooding patterns, and consumptive use of plant resources was influencing natural processes. Floodplain vegetation in relation to physical environments and disturbances were studied along transects, perpendicular to the course of the Mahakali River in the western Terai, Nepal. Forest structural changes were studied for three years in ten plots. A randomized split-block experiment with nine burning and grazing treatments was performed in seasonally flooded grasslands. A semi-structured questionnaire was used to assess people's socio-economic status, natural resource use patterns and conservation attitudes. ^ Elevation, soil organic matter, nitrogen, percentage of sand and grazing intensity were significant in delineating herbaceous vegetation assemblages, whereas elevation and livestock grazing were significant in defining forest type boundaries. On the floodplain islands, highly grazed Dalbergia sissoo-Acacia catechu forests were devoid of understory woody vegetation, but the lightly grazed D. sissoo-mixed forests had a well-developed second canopy layer, comprising woody species other than D. sissoo and A. catechu. In grasslands, species richness and biomass production were highest at intermediate disturbance level represented by the lightly grazed and ungrazed early-burned treatments. Ethnicity, education and resource use patterns were important in influencing conservation attitudes. A succession towards the mixed forests would occur in D. sissoo-dominated floodplain forests, where dams and barrages reduce flooding and associated fluvial processes, and if livestock grazing is stopped, as occasionally suggested by nature conservationists. In seasonally flooded grasslands, early burning with moderate grazing would enhance the species diversity and productivity. There is a need to implement a participatory integrated wetland management plan, to include community development, education and off farm income generation, to assure participatory conservation and management of wetlands in Nepal. ^
Resumo:
During the remediation of burial grounds at the US Department of Energy's (DOE's) Hanford Site in Washington State, the dispersion of contaminated soil particles and dust is an issue that is faced by site workers on a daily basis. This contamination problem is even more of a concern when one takes into account the semi-arid characteristics of the region where the site is located. To mitigate this problem, workers at the site use a variety of engineered methods to minimize the dispersion of contaminated soil and dust (i.e. use of water and/or suppression agents that stabilizes the soil prior to soil excavation, segregation, and removal activities). A primary contributor to the dispersion of contaminated soil and dust is wind soil erosion. The erosion process occurs when the wind speed exceeds a certain threshold value which depends on a number of factors including wind force loading, particle size, surface soil moisture, and the geometry of the soil. Thus under these circumstances, the mobility of contaminated soil and generation and dispersion of particulate matter are significantly influenced by these parameters. This dependence of soil and dust movement on threshold shear velocity, fixative dilution and/or application rates, soil moisture content, and soil geometry were studied for Hanford's sandy soil through a series of wind tunnel experiments, laboratory experiments and theoretical analysis. In addition, the behavior of plutonium (Pu) powder contamination in the soil was studied by introducing a Pu simulant (cerium oxide). The results showed that soil dispersion and PM10 concentrations decreased with increasing soil moisture. Also, it was shown that the mobility of the soil was affected by increasing wind velocity. It was demonstrated that the use of fixative products greatly decreased the amount of soil and PM10 concentrations when exposed to varying wind conditions. In addition, it was shown that geometry of the soil sample affected the velocity profile and calculation of roughness surface coefficient when comparing round and flat soil samples. Finally, threshold shear velocities were calculated for soil with flat surface and their dependency on surface soil moisture was demonstrated. A theoretical framework was developed to explain these dependencies.
Resumo:
Miami-Dade County implemented a series of water conservation programs, which included rebate/exchange incentives to encourage the use of high efficiency aerators (AR), showerheads (SH), toilets (HET) and clothes washers (HEW), to respond to the environmental sustainability issue in urban areas. This study first used panel data analysis of water consumption to evaluate the performance and actual water savings of individual programs. Integrated water demand model has also been developed for incorporating property’s physical characteristics into the water consumption profiles. Life cycle assessment (with emphasis on end-use stage in water system) of water intense appliances was conducted to determine the environmental impacts brought by each practice. Approximately 6 to 10 % of water has been saved in the first and second year of implementation of high efficiency appliances, and with continuing savings in the third and fourth years. Water savings (gallons per household per day) for water efficiency appliances were observed at 28 (11.1%) for SH, 34.7 (13.3%) for HET, and 39.7 (14.5%) for HEW. Furthermore, the estimated contributions of high efficiency appliances for reducing water demand in the integrated water demand model were between 5 and 19% (highest in the AR program). Results indicated that adoption of more than one type of water efficiency appliance could significantly reduce residential water demand. For the sustainable water management strategies, the appropriate water conservation rate was projected to be 1 to 2 million gallons per day (MGD) through 2030. With 2 MGD of water savings, the estimated per capita water use (GPCD) could be reduced from approximately 140 to 122 GPCD. Additional efforts are needed to reduce the water demand to US EPA’s “Water Sense” conservation levels of 70 GPCD by 2030. Life cycle assessment results showed that environmental impacts (water and energy demands and greenhouse gas emissions) from end-use and demand phases are most significant within the water system, particularly due to water heating (73% for clothes washer and 93% for showerhead). Estimations of optimal lifespan for appliances (8 to 21 years) implied that earlier replacement with efficiency models is encouraged in order to minimize the environmental impacts brought by current practice.
Resumo:
Wetlands respond to nutrient enrichment with characteristic increases in soil nutrients and shifts in plant community composition. These responses to eutrophication tend to be more rapid and longer lasting in oligotrophic systems. In this study, we documented changes associated with water quality from 1989 to 1999 in oligotrophic Everglades wetlands. We accomplished this by resampling soils and macrophytes along four transects in 1999 that were originally sampled in 1989. In addition to documenting soil phosphorus (P) levels and decadal changes in plant species composition at the same sites, we report macrophyte tissue nutrient and biomass data from 1999 for future temporal comparisons. Water quality improved throughout much of the Everglades in the 1990s. In spite of this improvement, though, we found that water quality impacts worsened during this time in areas of the northern Everglades (western Loxahatchee National Wildlife Refuge [NWR] and Water Conservation Area [WCA] 2A). Zones of high soil P (exceeding 700 mg P kg−1 dry wt. soil) increased to more than 1 km from the western margin canal into the Loxahatchee NWR and more than 4 km from northern boundary canal into WCA-2A. This doubling of the high soil P zones since 1989 was paralleled with an expansion of cattail (Typha spp.)-dominated marsh in both regions. Macrophyte species richness declined in both areas from 1989 to 1999 (27% in the Loxahatchee NWR and 33% in WCA-2A). In contrast, areas well south of the Everglades Agricultural Area, including WCA-3A and Everglades National Park (ENP), did not decline during this time. We found no significant decadal change in plant community patterns from 1989 and 1999 along transects in southern WCA-3A or Shark River Slough (ENP). Our 1999 sampling also included a new transect in Taylor Slough (ENP), which will allow change analysis here in the future. Regular sampling of these transects, to verify decadal-scale environmental impacts or improvements, will continue to be an important tool for long-term management and restoration of the Everglades.
Resumo:
A LLE-GC-MS method was developed to detect PPCPs in surface water samples from Big Cypress National Park, Everglades National Park and Biscayne National Park in South Florida. The most frequently found PPCPs were caffeine, DEET and triclosan with detected maximum concentration of 169 ng/L, 27.9 ng/L and 10.9 ng/L, respectively. The detection frequencies of hormones were less than PPCPs. Detected maximal concentrations of estrone, 17β-estradiol, coprostan-3-ol, coprostane and coprostan-3-one were 5.98 ng/L, 3.34 ng/L, 16.5 ng/L, 13.5 ng/L and 6.79 ng/L, respectively. An ASE-SPE-GC-MS method was developed and applied to the analysis of the sediment and soil area where reclaimed water was used for irrigation. Most analytes were below detection limits, even though some of analytes were detected in the reclaimed water at relatively high concentrations corroborating the fact that PPCPs do not significantly partition to mineral phases. An online SPE-HPLC-APPI-MS/MS method and an online SPE-HPLC-HESI-MS/MS method were developed to analyze reclaimed water and drinking water samples. In the reclaimed water study, reclaimed water samples were collected from the sprinkler for a year-long period at Florida International University Biscayne Bay Campus, where reclaimed water was reused for irrigation. Analysis results showed that several analytes were continuously detected in all reclaimed water samples. Coprostanol, bisphenol A and DEET's maximum concentration exceeded 10 μg/L (ppb). The four most frequently detected compounds were diphenhydramine (100%), DEET (98%), atenolol (98%) and carbamazepine (96%). In the study of drinking water, 54 tap water samples were collected from the Miami-Dade area. The maximum concentrations of salicylic acid, ibuprofen and DEET were 521 ng/L, 301 ng/L and 290 ng/L, respectively. The three most frequently detected compounds were DEET (93%), carbamazepine (43%) and salicylic acid (37%), respectively. Because the source of drinking water in Miami-Dade County is the relatively pristine Biscayne aquifer, these findings suggest the presence of wastewater intrusions into the delivery system or the onset of direct influence of surface waters into the shallow aquifer.
Resumo:
Mass inventories of total Hg (THg) and methylmercury (MeHg) and mass budgets of Hg newly deposited during the 2005 dry and wet seasons were constructed for the Everglades. As a sink for Hg, the Everglades has accumulated 914, 1138, 4931, and 7602 kg of legacy THg in its 4 management units, namely Water Conservation Area (WCA) 1, 2, 3, and the Everglades National Park (ENP), respectively, with most Hg being stored in soil. The current annual Hg inputs account only for 1−2% of the legacy Hg. Mercury transport across management units during a season amounts to 1% or less of Hg storage, except for WCA 2 where inflow inputs can contribute 4% of total MeHg storage. Mass budget suggests distinct spatiality for cycling of seasonally deposited Hg, with significantly lower THg fluxes entering water and floc in ENP than in the WCAs. Floc in WCAs can retain a considerable fraction (around 16%) of MeHg produced from the newly deposited Hg during the wet season. This work is important for evaluating the magnitude of legacy Hg contamination and for predicting the fate of new Hg in the Everglades, and provides a methodological example for large-scale studies on Hg cycling in wetlands.
Resumo:
Recent research makes clear that much of the Everglade’s flora and fauna have evolved to tolerate or require frequent fires. Nevertheless, restoration of the Everglades has thus far been conceptualized as primarily a water reallocation project. These two forces are directly linked by the influence of water flows on fire fuel moisture content, and are indirectly linked through a series of complex feedback loops. This interaction is made more complex by the alteration and compartmentalization of current water flows and fire regimes, the lack of communication between water and fire management agencies, and the already imperiled state of many local species. It is unlikely, therefore, that restoring water flows will automatically restore the appropriate fire regimes, leaving the prospect of successful restoration in some doubt. The decline of the Cape Sable seaside sparrow, and its potential for recovery, illustrates the complexity of the situation.