20 resultados para MULTI-RELATIONAL DATA MINING

em Digital Commons at Florida International University


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The nation's freeway systems are becoming increasingly congested. A major contribution to traffic congestion on freeways is due to traffic incidents. Traffic incidents are non-recurring events such as accidents or stranded vehicles that cause a temporary roadway capacity reduction, and they can account for as much as 60 percent of all traffic congestion on freeways. One major freeway incident management strategy involves diverting traffic to avoid incident locations by relaying timely information through Intelligent Transportation Systems (ITS) devices such as dynamic message signs or real-time traveler information systems. The decision to divert traffic depends foremost on the expected duration of an incident, which is difficult to predict. In addition, the duration of an incident is affected by many contributing factors. Determining and understanding these factors can help the process of identifying and developing better strategies to reduce incident durations and alleviate traffic congestion. A number of research studies have attempted to develop models to predict incident durations, yet with limited success. ^ This dissertation research attempts to improve on this previous effort by applying data mining techniques to a comprehensive incident database maintained by the District 4 ITS Office of the Florida Department of Transportation (FDOT). Two categories of incident duration prediction models were developed: "offline" models designed for use in the performance evaluation of incident management programs, and "online" models for real-time prediction of incident duration to aid in the decision making of traffic diversion in the event of an ongoing incident. Multiple data mining analysis techniques were applied and evaluated in the research. The multiple linear regression analysis and decision tree based method were applied to develop the offline models, and the rule-based method and a tree algorithm called M5P were used to develop the online models. ^ The results show that the models in general can achieve high prediction accuracy within acceptable time intervals of the actual durations. The research also identifies some new contributing factors that have not been examined in past studies. As part of the research effort, software code was developed to implement the models in the existing software system of District 4 FDOT for actual applications. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With the explosive growth of the volume and complexity of document data (e.g., news, blogs, web pages), it has become a necessity to semantically understand documents and deliver meaningful information to users. Areas dealing with these problems are crossing data mining, information retrieval, and machine learning. For example, document clustering and summarization are two fundamental techniques for understanding document data and have attracted much attention in recent years. Given a collection of documents, document clustering aims to partition them into different groups to provide efficient document browsing and navigation mechanisms. One unrevealed area in document clustering is that how to generate meaningful interpretation for the each document cluster resulted from the clustering process. Document summarization is another effective technique for document understanding, which generates a summary by selecting sentences that deliver the major or topic-relevant information in the original documents. How to improve the automatic summarization performance and apply it to newly emerging problems are two valuable research directions. To assist people to capture the semantics of documents effectively and efficiently, the dissertation focuses on developing effective data mining and machine learning algorithms and systems for (1) integrating document clustering and summarization to obtain meaningful document clusters with summarized interpretation, (2) improving document summarization performance and building document understanding systems to solve real-world applications, and (3) summarizing the differences and evolution of multiple document sources.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Due to the rapid advances in computing and sensing technologies, enormous amounts of data are being generated everyday in various applications. The integration of data mining and data visualization has been widely used to analyze these massive and complex data sets to discover hidden patterns. For both data mining and visualization to be effective, it is important to include the visualization techniques in the mining process and to generate the discovered patterns for a more comprehensive visual view. In this dissertation, four related problems: dimensionality reduction for visualizing high dimensional datasets, visualization-based clustering evaluation, interactive document mining, and multiple clusterings exploration are studied to explore the integration of data mining and data visualization. In particular, we 1) propose an efficient feature selection method (reliefF + mRMR) for preprocessing high dimensional datasets; 2) present DClusterE to integrate cluster validation with user interaction and provide rich visualization tools for users to examine document clustering results from multiple perspectives; 3) design two interactive document summarization systems to involve users efforts and generate customized summaries from 2D sentence layouts; and 4) propose a new framework which organizes the different input clusterings into a hierarchical tree structure and allows for interactive exploration of multiple clustering solutions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electronic database handling of buisness information has gradually gained its popularity in the hospitality industry. This article provides an overview on the fundamental concepts of a hotel database and investigates the feasibility of incorporating computer-assisted data mining techniques into hospitality database applications. The author also exposes some potential myths associated with data mining in hospitaltiy database applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Online Social Network (OSN) services provided by Internet companies bring people together to chat, share the information, and enjoy the information. Meanwhile, huge amounts of data are generated by those services (they can be regarded as the social media ) every day, every hour, even every minute, and every second. Currently, researchers are interested in analyzing the OSN data, extracting interesting patterns from it, and applying those patterns to real-world applications. However, due to the large-scale property of the OSN data, it is difficult to effectively analyze it. This dissertation focuses on applying data mining and information retrieval techniques to mine two key components in the social media data — users and user-generated contents. Specifically, it aims at addressing three problems related to the social media users and contents: (1) how does one organize the users and the contents? (2) how does one summarize the textual contents so that users do not have to go over every post to capture the general idea? (3) how does one identify the influential users in the social media to benefit other applications, e.g., Marketing Campaign? The contribution of this dissertation is briefly summarized as follows. (1) It provides a comprehensive and versatile data mining framework to analyze the users and user-generated contents from the social media. (2) It designs a hierarchical co-clustering algorithm to organize the users and contents. (3) It proposes multi-document summarization methods to extract core information from the social network contents. (4) It introduces three important dimensions of social influence, and a dynamic influence model for identifying influential users.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Online Social Network (OSN) services provided by Internet companies bring people together to chat, share the information, and enjoy the information. Meanwhile, huge amounts of data are generated by those services (they can be regarded as the social media ) every day, every hour, even every minute, and every second. Currently, researchers are interested in analyzing the OSN data, extracting interesting patterns from it, and applying those patterns to real-world applications. However, due to the large-scale property of the OSN data, it is difficult to effectively analyze it. This dissertation focuses on applying data mining and information retrieval techniques to mine two key components in the social media data — users and user-generated contents. Specifically, it aims at addressing three problems related to the social media users and contents: (1) how does one organize the users and the contents? (2) how does one summarize the textual contents so that users do not have to go over every post to capture the general idea? (3) how does one identify the influential users in the social media to benefit other applications, e.g., Marketing Campaign? The contribution of this dissertation is briefly summarized as follows. (1) It provides a comprehensive and versatile data mining framework to analyze the users and user-generated contents from the social media. (2) It designs a hierarchical co-clustering algorithm to organize the users and contents. (3) It proposes multi-document summarization methods to extract core information from the social network contents. (4) It introduces three important dimensions of social influence, and a dynamic influence model for identifying influential users.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An Automatic Vehicle Location (AVL) system is a computer-based vehicle tracking system that is capable of determining a vehicle's location in real time. As a major technology of the Advanced Public Transportation System (APTS), AVL systems have been widely deployed by transit agencies for purposes such as real-time operation monitoring, computer-aided dispatching, and arrival time prediction. AVL systems make a large amount of transit performance data available that are valuable for transit performance management and planning purposes. However, the difficulties of extracting useful information from the huge spatial-temporal database have hindered off-line applications of the AVL data. ^ In this study, a data mining process, including data integration, cluster analysis, and multiple regression, is proposed. The AVL-generated data are first integrated into a Geographic Information System (GIS) platform. The model-based cluster method is employed to investigate the spatial and temporal patterns of transit travel speeds, which may be easily translated into travel time. The transit speed variations along the route segments are identified. Transit service periods such as morning peak, mid-day, afternoon peak, and evening periods are determined based on analyses of transit travel speed variations for different times of day. The seasonal patterns of transit performance are investigated by using the analysis of variance (ANOVA). Travel speed models based on the clustered time-of-day intervals are developed using important factors identified as having significant effects on speed for different time-of-day periods. ^ It has been found that transit performance varied from different seasons and different time-of-day periods. The geographic location of a transit route segment also plays a role in the variation of the transit performance. The results of this research indicate that advanced data mining techniques have good potential in providing automated techniques of assisting transit agencies in service planning, scheduling, and operations control. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The primary aim of this dissertation is to develop data mining tools for knowledge discovery in biomedical data when multiple (homogeneous or heterogeneous) sources of data are available. The central hypothesis is that, when information from multiple sources of data are used appropriately and effectively, knowledge discovery can be better achieved than what is possible from only a single source. ^ Recent advances in high-throughput technology have enabled biomedical researchers to generate large volumes of diverse types of data on a genome-wide scale. These data include DNA sequences, gene expression measurements, and much more; they provide the motivation for building analysis tools to elucidate the modular organization of the cell. The challenges include efficiently and accurately extracting information from the multiple data sources; representing the information effectively, developing analytical tools, and interpreting the results in the context of the domain. ^ The first part considers the application of feature-level integration to design classifiers that discriminate between soil types. The machine learning tools, SVM and KNN, were used to successfully distinguish between several soil samples. ^ The second part considers clustering using multiple heterogeneous data sources. The resulting Multi-Source Clustering (MSC) algorithm was shown to have a better performance than clustering methods that use only a single data source or a simple feature-level integration of heterogeneous data sources. ^ The third part proposes a new approach to effectively incorporate incomplete data into clustering analysis. Adapted from K-means algorithm, the Generalized Constrained Clustering (GCC) algorithm makes use of incomplete data in the form of constraints to perform exploratory analysis. Novel approaches for extracting constraints were proposed. For sufficiently large constraint sets, the GCC algorithm outperformed the MSC algorithm. ^ The last part considers the problem of providing a theme-specific environment for mining multi-source biomedical data. The database called PlasmoTFBM, focusing on gene regulation of Plasmodium falciparum, contains diverse information and has a simple interface to allow biologists to explore the data. It provided a framework for comparing different analytical tools for predicting regulatory elements and for designing useful data mining tools. ^ The conclusion is that the experiments reported in this dissertation strongly support the central hypothesis.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The dissertation reports on two studies. The purpose of Study I was to develop and evaluate a measure of cognitive competence (the Critical Problem Solving Skills Scale – Qualitative Extension) using Relational Data Analysis (RDA) with a multi-ethnic, adolescent sample. My study builds on previous work that has been conducted to provide evidence for the reliability and validity of the RDA framework in evaluating youth development programs (Kurtines et al., 2008). Inter-coder percent agreement among the TOC and TCC coders for each of the category levels was moderate to high, with a range of .76 to .94. The Fleiss' kappa across all category levels was from substantial agreement to almost perfect agreement, with a range of .72 to .91. The correlation between the TOC and the TCC demonstrated medium to high correlation, with a range of r(40)=.68, p<.001 to r(40)=.79, p<.001. Study II reports an investigation of a positive youth development program using an Outcome Mediation Cascade (OMC) evaluation model, an integrated model for evaluating the empirical intersection between intervention and developmental processes. The Changing Lives Program (CLP) is a community supported positive youth development intervention implemented in a practice setting as a selective/indicated program for multi-ethnic, multi-problem at risk youth in urban alternative high schools in the Miami Dade County Public Schools (M-DCPS). The 259 participants for this study were drawn from the CLP's archival data file. The study used a structural equation modeling approach to construct and evaluate the hypothesized model. Findings indicated that the hypothesized model fit the data (χ2 (7) = 5.651, p = .83; RMSEA = .00; CFI = 1.00; WRMR = .319). My study built on previous research using the OMC evaluation model (Eichas, 2010), and the findings are consistent with the hypothesis that in addition to having effects on targeted positive outcomes, PYD interventions are likely to have progressive cascading effects on untargeted problem outcomes that operate through effects on positive outcomes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is a growing body of literature that provides evidence for the efficacy of positive youth development programs in general and preliminary empirical support for the efficacy of the Changing Lives Program (CLP) in particular. This dissertation sought to extend previous efforts to develop and preliminarily examine the Transformative Goal Attainment Scale (TGAS) as a measure of participant empowerment in the promotion of positive development. Consistent with recent advances in the use of qualitative research methods, this dissertation sought to further investigate the utility of Relational Data Analysis (RDA) for providing categorizations of qualitative open-ended response data. In particular, a qualitative index of Transformative Goals, TG, was developed to complement the previously developed quantitative index of Transformative Goal Attainment (TGA), and RDA procedures for calculating reliability and content validity were refined. Second, as a Stage I pilot/feasibility study this study preliminarily examined the potentially mediating role of empowerment, as indexed by the TGAS, in the promotion of positive development. ^ Fifty-seven participants took part in this study, forty CLP intervention participants and seventeen control condition participants. All 57 participants were administered the study's measures just prior to and just following the fall 2003 semester. This study thus used a short-term longitudinal quasi-experimental research design with a comparison control group. ^ RDA procedures were refined and applied to the categorization of open-ended response data regarding participants' transformative goals (TG) and future possible selves (PSQ-QE). These analyses revealed relatively strong, indirect evidence for the construct validity of the categories as well as their theoretically meaningful structural organization, thereby providing sufficient support for the utility of RDA procedures in the categorization of qualitative open-ended response data. ^ In addition, transformative goals (TG) and future possible selves (PSQ-QE), and the quantitative index of perceived goal attainment (TGA) were evaluated as potential mediators of positive development by testing their relationships to other indices of positive intervention outcome within a four-step method involving both analysis of variance (ANOVA and RMANOVAs) and regression analysis. Though more limited in scope than the efforts at the development and refinement of the measures of these mediators, the results were also promising. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ensemble Stream Modeling and Data-cleaning are sensor information processing systems have different training and testing methods by which their goals are cross-validated. This research examines a mechanism, which seeks to extract novel patterns by generating ensembles from data. The main goal of label-less stream processing is to process the sensed events to eliminate the noises that are uncorrelated, and choose the most likely model without over fitting thus obtaining higher model confidence. Higher quality streams can be realized by combining many short streams into an ensemble which has the desired quality. The framework for the investigation is an existing data mining tool. First, to accommodate feature extraction such as a bush or natural forest-fire event we make an assumption of the burnt area (BA*), sensed ground truth as our target variable obtained from logs. Even though this is an obvious model choice the results are disappointing. The reasons for this are two: One, the histogram of fire activity is highly skewed. Two, the measured sensor parameters are highly correlated. Since using non descriptive features does not yield good results, we resort to temporal features. By doing so we carefully eliminate the averaging effects; the resulting histogram is more satisfactory and conceptual knowledge is learned from sensor streams. Second is the process of feature induction by cross-validating attributes with single or multi-target variables to minimize training error. We use F-measure score, which combines precision and accuracy to determine the false alarm rate of fire events. The multi-target data-cleaning trees use information purity of the target leaf-nodes to learn higher order features. A sensitive variance measure such as ƒ-test is performed during each node's split to select the best attribute. Ensemble stream model approach proved to improve when using complicated features with a simpler tree classifier. The ensemble framework for data-cleaning and the enhancements to quantify quality of fitness (30% spatial, 10% temporal, and 90% mobility reduction) of sensor led to the formation of streams for sensor-enabled applications. Which further motivates the novelty of stream quality labeling and its importance in solving vast amounts of real-time mobile streams generated today.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The dissertation reports on two studies. The purpose of Study I was to develop and evaluate a measure of cognitive competence (the Critical Problem Solving Skills Scale – Qualitative Extension) using Relational Data Analysis (RDA) with a multi-ethnic, adolescent sample. My study builds on previous work that has been conducted to provide evidence for the reliability and validity of the RDA framework in evaluating youth development programs (Kurtines et al., 2008). Inter-coder percent agreement among the TOC and TCC coders for each of the category levels was moderate to high, with a range of .76 to .94. The Fleiss’ kappa across all category levels was from substantial agreement to almost perfect agreement, with a range of .72 to .91. The correlation between the TOC and the TCC demonstrated medium to high correlation, with a range of r(40)=.68, p Study II reports an investigation of a positive youth development program using an Outcome Mediation Cascade (OMC) evaluation model, an integrated model for evaluating the empirical intersection between intervention and developmental processes. The Changing Lives Program (CLP) is a community supported positive youth development intervention implemented in a practice setting as a selective/indicated program for multi-ethnic, multi-problem at risk youth in urban alternative high schools in the Miami Dade County Public Schools (M-DCPS). The 259 participants for this study were drawn from the CLP’s archival data file. The study used a structural equation modeling approach to construct and evaluate the hypothesized model. Findings indicated that the hypothesized model fit the data (χ2 (7) = 5.651, p = .83; RMSEA = .00; CFI = 1.00; WRMR = .319). My study built on previous research using the OMC evaluation model (Eichas, 2010), and the findings are consistent with the hypothesis that in addition to having effects on targeted positive outcomes, PYD interventions are likely to have progressive cascading effects on untargeted problem outcomes that operate through effects on positive outcomes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ensemble Stream Modeling and Data-cleaning are sensor information processing systems have different training and testing methods by which their goals are cross-validated. This research examines a mechanism, which seeks to extract novel patterns by generating ensembles from data. The main goal of label-less stream processing is to process the sensed events to eliminate the noises that are uncorrelated, and choose the most likely model without over fitting thus obtaining higher model confidence. Higher quality streams can be realized by combining many short streams into an ensemble which has the desired quality. The framework for the investigation is an existing data mining tool. First, to accommodate feature extraction such as a bush or natural forest-fire event we make an assumption of the burnt area (BA*), sensed ground truth as our target variable obtained from logs. Even though this is an obvious model choice the results are disappointing. The reasons for this are two: One, the histogram of fire activity is highly skewed. Two, the measured sensor parameters are highly correlated. Since using non descriptive features does not yield good results, we resort to temporal features. By doing so we carefully eliminate the averaging effects; the resulting histogram is more satisfactory and conceptual knowledge is learned from sensor streams. Second is the process of feature induction by cross-validating attributes with single or multi-target variables to minimize training error. We use F-measure score, which combines precision and accuracy to determine the false alarm rate of fire events. The multi-target data-cleaning trees use information purity of the target leaf-nodes to learn higher order features. A sensitive variance measure such as f-test is performed during each node’s split to select the best attribute. Ensemble stream model approach proved to improve when using complicated features with a simpler tree classifier. The ensemble framework for data-cleaning and the enhancements to quantify quality of fitness (30% spatial, 10% temporal, and 90% mobility reduction) of sensor led to the formation of streams for sensor-enabled applications. Which further motivates the novelty of stream quality labeling and its importance in solving vast amounts of real-time mobile streams generated today.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Semantic Binary Data Model (SBM) is a viable alternative to the now-dominant relational data model. SBM would be especially advantageous for applications dealing with complex interrelated networks of objects provided that a robust efficient implementation can be achieved. This dissertation presents an implementation design method for SBM, algorithms, and their analytical and empirical evaluation. Our method allows building a robust and flexible database engine with a wider applicability range and improved performance. ^ Extensions to SBM are introduced and an implementation of these extensions is proposed that allows the database engine to efficiently support applications with a predefined set of queries. A New Record data structure is proposed. Trade-offs of employing Fact, Record and Bitmap Data structures for storing information in a semantic database are analyzed. ^ A clustering ID distribution algorithm and an efficient algorithm for object ID encoding are proposed. Mapping to an XML data model is analyzed and a new XML-based XSDL language facilitating interoperability of the system is defined. Solutions to issues associated with making the database engine multi-platform are presented. An improvement to the atomic update algorithm suitable for certain scenarios of database recovery is proposed. ^ Specific guidelines are devised for implementing a robust and well-performing database engine based on the extended Semantic Data Model. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main challenges of multimedia data retrieval lie in the effective mapping between low-level features and high-level concepts, and in the individual users' subjective perceptions of multimedia content. ^ The objectives of this dissertation are to develop an integrated multimedia indexing and retrieval framework with the aim to bridge the gap between semantic concepts and low-level features. To achieve this goal, a set of core techniques have been developed, including image segmentation, content-based image retrieval, object tracking, video indexing, and video event detection. These core techniques are integrated in a systematic way to enable the semantic search for images/videos, and can be tailored to solve the problems in other multimedia related domains. In image retrieval, two new methods of bridging the semantic gap are proposed: (1) for general content-based image retrieval, a stochastic mechanism is utilized to enable the long-term learning of high-level concepts from a set of training data, such as user access frequencies and access patterns of images. (2) In addition to whole-image retrieval, a novel multiple instance learning framework is proposed for object-based image retrieval, by which a user is allowed to more effectively search for images that contain multiple objects of interest. An enhanced image segmentation algorithm is developed to extract the object information from images. This segmentation algorithm is further used in video indexing and retrieval, by which a robust video shot/scene segmentation method is developed based on low-level visual feature comparison, object tracking, and audio analysis. Based on shot boundaries, a novel data mining framework is further proposed to detect events in soccer videos, while fully utilizing the multi-modality features and object information obtained through video shot/scene detection. ^ Another contribution of this dissertation is the potential of the above techniques to be tailored and applied to other multimedia applications. This is demonstrated by their utilization in traffic video surveillance applications. The enhanced image segmentation algorithm, coupled with an adaptive background learning algorithm, improves the performance of vehicle identification. A sophisticated object tracking algorithm is proposed to track individual vehicles, while the spatial and temporal relationships of vehicle objects are modeled by an abstract semantic model. ^