3 resultados para METAL-CATALYSTS

em Digital Commons at Florida International University


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Group VI metal hexacarbonyls, M(CO)6 (M = Cr, Mo and W), are of extreme importance as catalysts in industry and also of fundamental interest due to the established charge transfer mechanism between the carbon monoxide and the metal. They condense to molecular solids at ambient conditions retaining the octahedral (Oh) symmetry of gas phase and have been extensively investigated by previous workers to understand their fundamental chemical bonding and possible industrial applications. However little is known about their behavior at high pressures which is the focus of this dissertation. Metal hexacarbonyls were subjected to high pressures in Diamond-Anvil cells to understand the pressure effect on chemical bonding using Raman scattering in situ. The high-pressure results on each of the three metal hexacarbonyls are presented and are followed by a critical analysis of the entire family. The Raman study was conducted at pressures up to 45 GPa and X-ray up to 58 GPa. This is followed by a discussion on infra red spectra in conjunction with Raman and X-ray analysis to provide a rationale for polymerization. Finally the probable synthesis of extremely reactive species under high-pressures and as identified via Raman is discussed. The high-pressure Raman scattering, up to 30 GPa, demonstrated the absence of Π-backbonding. The disappearance of parental Raman spectra for (M = Cr, Mo and W) at 29.6, 23.3 and 22.2 GPa respectively was attributed to the total collapse of the Oh symmetry. This collapse under high-pressure lead to metal-mediated polymeric phase characterized by Raman active δ(OCO) feature, originating from intermolecular vibrational coupling in the parent sample. Further increase in pressures up to 45 GPa, did not affect this feature. The pressure quenched Raman spectra, revealed various chemical groups non-characteristic of the parent sample and adsorption of CO in addition to the characteristic δ(OCO) feature. The thus recorded Raman, complemented with the far and mid-infrared pressure quenched spectra, reveal the formation of novel metal-mediated polymers. The X-ray diffraction on W(CO)6 up to 58 GPa revealed the generation of amorphous polymeric pattern which was retained back to ambient conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this research the integration of nanostructures and micro-scale devices was investigated using silica nanowires to develop a simple yet robust nanomanufacturing technique for improving the detection parameters of chemical and biological sensors. This has been achieved with the use of a dielectric barrier layer, to restrict nanowire growth to site-specific locations which has removed the need for post growth processing, by making it possible to place nanostructures on pre-pattern substrates. Nanowires were synthesized using the Vapor-Liquid-Solid growth method. Process parameters (temperature and time) and manufacturing aspects (structural integrity and biocompatibility) were investigated. Silica nanowires were observed experimentally to determine how their physical and chemical properties could be tuned for integration into existing sensing structures. Growth kinetic experiments performed using gold and palladium catalysts at 1050°C for 60 minutes in an open-tube furnace yielded dense and consistent silica nanowire growth. This consistent growth led to the development of growth model fitting, through use of the Maximum Likelihood Estimation (MLE) and Bayesian hierarchical modeling. Transmission electron microscopy studies revealed the nanowires to be amorphous and X-ray diffraction confirmed the composition to be SiO2 . Silica nanowires were monitored in epithelial breast cancer media using Impedance spectroscopy, to test biocompatibility, due to potential in vivo use as a diagnostic aid. It was found that palladium catalyzed silica nanowires were toxic to breast cancer cells, however, nanowires were inert at 1μg/mL concentrations. Additionally a method for direct nanowire integration was developed that allowed for silica nanowires to be grown directly into interdigitated sensing structures. This technique eliminates the need for physical nanowire transfer thus preserving nanowire structure and performance integrity and further reduces fabrication cost. Successful nanowire integration was physically verified using Scanning electron microscopy and confirmed electrically using Electrochemical Impedance Spectroscopy of immobilized Prostate Specific Antigens (PSA). The experiments performed above serve as a guideline to addressing the metallurgic challenges in nanoscale integration of materials with varying composition and to understanding the effects of nanomaterials on biological structures that come in contact with the human body.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this research the integration of nanostructures and micro-scale devices was investigated using silica nanowires to develop a simple yet robust nanomanufacturing technique for improving the detection parameters of chemical and biological sensors. This has been achieved with the use of a dielectric barrier layer, to restrict nanowire growth to site-specific locations which has removed the need for post growth processing, by making it possible to place nanostructures on pre-pattern substrates. Nanowires were synthesized using the Vapor-Liquid-Solid growth method. Process parameters (temperature and time) and manufacturing aspects (structural integrity and biocompatibility) were investigated. Silica nanowires were observed experimentally to determine how their physical and chemical properties could be tuned for integration into existing sensing structures. Growth kinetic experiments performed using gold and palladium catalysts at 1050 ˚C for 60 minutes in an open-tube furnace yielded dense and consistent silica nanowire growth. This consistent growth led to the development of growth model fitting, through use of the Maximum Likelihood Estimation (MLE) and Bayesian hierarchical modeling. Transmission electron microscopy studies revealed the nanowires to be amorphous and X-ray diffraction confirmed the composition to be SiO2 . Silica nanowires were monitored in epithelial breast cancer media using Impedance spectroscopy, to test biocompatibility, due to potential in vivo use as a diagnostic aid. It was found that palladium catalyzed silica nanowires were toxic to breast cancer cells, however, nanowires were inert at 1µg/mL concentrations. Additionally a method for direct nanowire integration was developed that allowed for silica nanowires to be grown directly into interdigitated sensing structures. This technique eliminates the need for physical nanowire transfer thus preserving nanowire structure and performance integrity and further reduces fabrication cost. Successful nanowire integration was physically verified using Scanning electron microscopy and confirmed electrically using Electrochemical Impedance Spectroscopy of immobilized Prostate Specific Antigens (PSA). The experiments performed above serve as a guideline to addressing the metallurgic challenges in nanoscale integration of materials with varying composition and to understanding the effects of nanomaterials on biological structures that come in contact with the human body.