9 resultados para MAXIMIZATION
em Digital Commons at Florida International University
Resumo:
For the Wayuu of the Guajira Peninsula of northern Colombia, water procurement has historically been challenging. The ancestral territory of this indigenous pastoral society is windy and arid, with low rainfall, high temperatures and an absence of perennial rivers or streams. In the past, the Wayuu adapted to these environmental conditions by practicing transhumance during the prolonged dry seasons, digging spring wells and artificial ponds and by following guiding principles for water usage. Since the 1930s, the government has made efforts to build additional wind-powered wells and ponds for a growing native population. Notwithstanding, these water solutions have only partly met the necessities; public water sources are limited or unreliable and few attempts are made to generate safe drinking water. Furthermore, the ubiquitous practice of animal husbandry places added pressure on existing sources; livestock consume more water than the human populations in the areas visited. Rapid assessments in four Wayuu areas on the peninsula were conducted by the author and an interdisciplinary team working for the Cerrejón Foundation for Water in La Guajira from 2010 to 2013. The assessments were part of a larger pilot project to design and implement a sustainability plan for reservoir-based water supply systems in the region. This study brings cultural practices and local knowledge to the forefront as key elements for the success of water works and other development projects carried out in Wayuu territory.
Resumo:
This dissertation discussed resource allocation mechanisms in several network topologies including infrastructure wireless network, non-infrastructure wireless network and wire-cum-wireless network. Different networks may have different resource constrains. Based on actual technologies and implementation models, utility function, game theory and a modern control algorithm have been introduced to balance power, bandwidth and customers' satisfaction in the system. ^ In infrastructure wireless networks, utility function was used in the Third Generation (3G) cellular network and the network was trying to maximize the total utility. In this dissertation, revenue maximization was set as an objective. Compared with the previous work on utility maximization, it is more practical to implement revenue maximization by the cellular network operators. The pricing strategies were studied and the algorithms were given to find the optimal price combination of power and rate to maximize the profit without degrading the Quality of Service (QoS) performance. ^ In non-infrastructure wireless networks, power capacity is limited by the small size of the nodes. In such a network, nodes need to transmit traffic not only for themselves but also for their neighbors, so power management become the most important issue for the network overall performance. Our innovative routing algorithm based on utility function, sets up a flexible framework for different users with different concerns in the same network. This algorithm allows users to make trade offs between multiple resource parameters. Its flexibility makes it a suitable solution for the large scale non-infrastructure network. This dissertation also covers non-cooperation problems. Through combining game theory and utility function, equilibrium points could be found among rational users which can enhance the cooperation in the network. ^ Finally, a wire-cum-wireless network architecture was introduced. This network architecture can support multiple services over multiple networks with smart resource allocation methods. Although a SONET-to-WiMAX case was used for the analysis, the mathematic procedure and resource allocation scheme could be universal solutions for all infrastructure, non-infrastructure and combined networks. ^
Resumo:
This dissertation is a discourse on the capital market and its interactive framework of acquisition and issuance of financial assets that drive the economy from both sides—investors/lenders and issuers/users of capital assets. My work consists of four essays in financial economics that offer a spectrum of revisions to this significant area of study. The first essay is a delineation of the capital market over the past half a century and major developments on capital markets on issues that pertain to the investor's opportunity set and the corporation's capital-raising availability set. This chapter should have merits on two counts: (i) a comprehensive account of capital markets and return-generating assets and (ii) a backdrop against which I present my findings in Chapters 2 through 4. ^ In Chapter 2, I rework on the Markowitz-Roy-Tobin structure of the efficient frontier and of the Separation Theorem. Starting off with a 2-asset portfolio and extending the paradigm to an n-asset portfolio, I bring out the optimal choice of assets for an investor under constrained utility maximization. In this chapter, I analyze the selection and revision-theoretic construct and bring out optimum choices. The effect of a change in perceived risk or return in the mind of an investor is ascertained on the portfolio composition. ^ Chapter 3 takes a look into corporations that issue market securities. The question of how a corporation decides what kinds of securities it should issue in the marketplace to raise funds brings out the classic value invariance proposition of Modigliani and Miller and fills the gap that existed in the literature for almost half a century. I question the general validity in the classic results of Modigliani and Miller and modify the existing literature on the celebrated value invariance proposition. ^ Chapter 4 takes the Modigliani-Miller regime to its correct prescription in the presence of corporate and personal taxes. I show that Modigliani-Miller's age-old proposition needs corrections and extensions, which I derive. ^ My dissertation overall brings all of these corrections and extensions to the existing literature as my findings, showing that capital markets are in an ever-changing state of necessary revision. ^
Resumo:
The first chapter analizes conditional assistance programs. They generate conflicting relationships between international financial institutions (IFIs) and member countries. The experience of IFIs with conditionality in the 1990s led them to allow countries more latitude in the design of their reform programs. A reformist government does not need conditionality and it is useless if it does not want to reform. A government that faces opposition may use conditionality and the help of pro-reform lobbies as a lever to counteract anti-reform groups and succeed in implementing reforms.^ The second chapter analizes economies saddled with taxes and regulations. I consider an economy in which many taxes, subsidies, and other distortionary restrictions are in place simultaneously. If I start from an inefficient laissez-faire equilibrium because of some domestic distortion, a small trade tax or subsidy can yield a first-order welfare improvement, even if the instrument itself creates distortions of its own. This may result in "welfare paradoxes". The purpose of the chapter is to quantify the welfare effects of changes in tax rates in a small open economy. I conduct the simulation in the context of an intertemporal utility maximization framework. I apply numerical methods to the model developed by Karayalcin. I introduce changes in the tax rates and quantify both the impact on welfare, consumption and foreign assets, and the path to the new steady-state values.^ The third chapter studies the role of stock markets and adjustment costs in the international transmission of supply shocks. The analysis of the transmission of a positive supply shock that originates in one of the countries shows that on impact the shock leads to an inmediate stock market boom enjoying the technological advance, while the other country suffers from depress stock market prices as demand for its equity declines. A period of adjustment begins culminating in a steady state capital and output level that is identical to the one before the shock. The the capital stock of one country undergoes a non-monotonic adjustment. The model is tested with plausible values of the variables and the numeric results confirm the predictions of the theory.^
Resumo:
Over the past few decades, we have been enjoying tremendous benefits thanks to the revolutionary advancement of computing systems, driven mainly by the remarkable semiconductor technology scaling and the increasingly complicated processor architecture. However, the exponentially increased transistor density has directly led to exponentially increased power consumption and dramatically elevated system temperature, which not only adversely impacts the system's cost, performance and reliability, but also increases the leakage and thus the overall power consumption. Today, the power and thermal issues have posed enormous challenges and threaten to slow down the continuous evolvement of computer technology. Effective power/thermal-aware design techniques are urgently demanded, at all design abstraction levels, from the circuit-level, the logic-level, to the architectural-level and the system-level. ^ In this dissertation, we present our research efforts to employ real-time scheduling techniques to solve the resource-constrained power/thermal-aware, design-optimization problems. In our research, we developed a set of simple yet accurate system-level models to capture the processor's thermal dynamic as well as the interdependency of leakage power consumption, temperature, and supply voltage. Based on these models, we investigated the fundamental principles in power/thermal-aware scheduling, and developed real-time scheduling techniques targeting at a variety of design objectives, including peak temperature minimization, overall energy reduction, and performance maximization. ^ The novelty of this work is that we integrate the cutting-edge research on power and thermal at the circuit and architectural-level into a set of accurate yet simplified system-level models, and are able to conduct system-level analysis and design based on these models. The theoretical study in this work serves as a solid foundation for the guidance of the power/thermal-aware scheduling algorithms development in practical computing systems.^
Resumo:
Fueled by increasing human appetite for high computing performance, semiconductor technology has now marched into the deep sub-micron era. As transistor size keeps shrinking, more and more transistors are integrated into a single chip. This has increased tremendously the power consumption and heat generation of IC chips. The rapidly growing heat dissipation greatly increases the packaging/cooling costs, and adversely affects the performance and reliability of a computing system. In addition, it also reduces the processor's life span and may even crash the entire computing system. Therefore, dynamic thermal management (DTM) is becoming a critical problem in modern computer system design. Extensive theoretical research has been conducted to study the DTM problem. However, most of them are based on theoretically idealized assumptions or simplified models. While these models and assumptions help to greatly simplify a complex problem and make it theoretically manageable, practical computer systems and applications must deal with many practical factors and details beyond these models or assumptions. The goal of our research was to develop a test platform that can be used to validate theoretical results on DTM under well-controlled conditions, to identify the limitations of existing theoretical results, and also to develop new and practical DTM techniques. This dissertation details the background and our research efforts in this endeavor. Specifically, in our research, we first developed a customized test platform based on an Intel desktop. We then tested a number of related theoretical works and examined their limitations under the practical hardware environment. With these limitations in mind, we developed a new reactive thermal management algorithm for single-core computing systems to optimize the throughput under a peak temperature constraint. We further extended our research to a multicore platform and developed an effective proactive DTM technique for throughput maximization on multicore processor based on task migration and dynamic voltage frequency scaling technique. The significance of our research lies in the fact that our research complements the current extensive theoretical research in dealing with increasingly critical thermal problems and enabling the continuous evolution of high performance computing systems.
Resumo:
In this paper, a heterogeneous network composed of femtocells deployed within a macrocell network is considered, and a quality-of-service (QoS)-oriented fairness metric which captures important characteristics of tiered network architectures is proposed. Using homogeneous Poisson processes, the sum capacities in such networks are expressed in closed form for co-channel, dedicated channel, and hybrid resource allocation methods. Then a resource splitting strategy that simultaneously considers capacity maximization, fairness constraints, and QoS constraints is proposed. Detailed computer simulations utilizing 3GPP simulation assumptions show that a hybrid allocation strategy with a well-designed resource split ratio enjoys the best cell-edge user performance, with minimal degradation in the sum throughput of macrocell users when compared with that of co-channel operation.
Resumo:
Infrastructure management agencies are facing multiple challenges, including aging infrastructure, reduction in capacity of existing infrastructure, and availability of limited funds. Therefore, decision makers are required to think innovatively and develop inventive ways of using available funds. Maintenance investment decisions are generally made based on physical condition only. It is important to understand that spending money on public infrastructure is synonymous with spending money on people themselves. This also requires consideration of decision parameters, in addition to physical condition, such as strategic importance, socioeconomic contribution and infrastructure utilization. Consideration of multiple decision parameters for infrastructure maintenance investments can be beneficial in case of limited funding. Given this motivation, this dissertation presents a prototype decision support framework to evaluate trade-off, among competing infrastructures, that are candidates for infrastructure maintenance, repair and rehabilitation investments. Decision parameters' performances measured through various factors are combined to determine the integrated state of an infrastructure using Multi-Attribute Utility Theory (MAUT). The integrated state, cost and benefit estimates of probable maintenance actions are utilized alongside expert opinion to develop transition probability and reward matrices for each probable maintenance action for a particular candidate infrastructure. These matrices are then used as an input to the Markov Decision Process (MDP) for the finite-stage dynamic programming model to perform project (candidate)-level analysis to determine optimized maintenance strategies based on reward maximization. The outcomes of project (candidate)-level analysis are then utilized to perform network-level analysis taking the portfolio management approach to determine a suitable portfolio under budgetary constraints. The major decision support outcomes of the prototype framework include performance trend curves, decision logic maps, and a network-level maintenance investment plan for the upcoming years. The framework has been implemented with a set of bridges considered as a network with the assistance of the Pima County DOT, AZ. It is expected that the concept of this prototype framework can help infrastructure management agencies better manage their available funds for maintenance.
Resumo:
The first chapter analizes conditional assistance programs. They generate conflicting relationships between international financial institutions (IFIs) and member countries. The experience of IFIs with conditionality in the 1990s led them to allow countries more latitude in the design of their reform programs. A reformist government does not need conditionality and it is useless if it does not want to reform. A government that faces opposition may use conditionality and the help of pro-reform lobbies as a lever to counteract anti-reform groups and succeed in implementing reforms. The second chapter analizes economies saddled with taxes and regulations. I consider an economy in which many taxes, subsidies, and other distortionary restrictions are in place simultaneously. If I start from an inefficient laissez-faire equilibrium because of some domestic distortion, a small trade tax or subsidy can yield a first-order welfare improvement, even if the instrument itself creates distortions of its own. This may result in "welfare paradoxes". The purpose of the chapter is to quantify the welfare effects of changes in tax rates in a small open economy. I conduct the simulation in the context of an intertemporal utility maximization framework. I apply numerical methods to the model developed by Karayalcin. I introduce changes in the tax rates and quantify both the impact on welfare, consumption and foreign assets, and the path to the new steady-state values. The third chapter studies the role of stock markets and adjustment costs in the international transmission of supply shocks. The analysis of the transmission of a positive supply shock that originates in one of the countries shows that on impact the shock leads to an inmediate stock market boom enjoying the technological advance, while the other country suffers from depress stock market prices as demand for its equity declines. A period of adjustment begins culminating in a steady state capital and output level that is identical to the one before the shock. The the capital stock of one country undergoes a non-monotonic adjustment. The model is tested with plausible values of the variables and the numeric results confirm the predictions of the theory.