8 resultados para MALE REPRODUCTIVE-SYSTEM
em Digital Commons at Florida International University
Resumo:
One in 3,000 people in the US are born with cystic fibrosis (CF), a genetic disorder affecting the reproductive system, pancreas, and lungs. Lung disease caused by chronic bacterial and fungal infections is the leading cause of morbidity and mortality in CF. Identities of the microbes are traditionally determined by culturing followed by phenotypic and biochemical assays. It was first thought that the bacterial infections were caused by a select handful of bacteria such as S. aureus, H. influenzae, B. cenocepacia, and P. aeruginosa. With the advent of PCR and molecular techniques, the polymicrobial nature of the CF lung became evident. The CF lung contains numerous bacteria and the communities are diverse and unique to each patient. The total complexity of the bacterial infections is still being determined. In addition, only a few members of the fungal communities have been identified. Much of the fungal community composition is still a mystery. This dissertation addresses this gap in knowledge. A snap shot of CF sputa bacterial community was obtained using the length heterogeneity-PCR community profiling technique. The profiles show that south Florida CF patients have a unique, diverse, and dynamic bacterial community which changes over time. The identities of the bacteria and fungi present were determined using the state-of-the-art 454 sequencing. Sequencing results show that the CF lung microbiome contains commonly cultured pathogenic bacteria, organisms considered a part of the healthy core biome, and novel organisms. Understanding the dynamic changes of these identified microbes will ultimately lead to better therapeutical interventions. Early detection is key in reducing the lung damage caused by chronic infections. Thus, there is a need for accurate and sensitive diagnostic tests. This issue was addressed by designing a bacterial diagnostic tool targeted towards CF pathogens using SPR. By identifying the organisms associated with the CF lung and understanding their community interactions, patients can receive better treatment and live longer.
Resumo:
One in 3,000 people in the US are born with cystic fibrosis (CF), a genetic disorder affecting the reproductive system, pancreas, and lungs. Lung disease caused by chronic bacterial and fungal infections is the leading cause of morbidity and mortality in CF. Identities of the microbes are traditionally determined by culturing followed by phenotypic and biochemical assays. It was first thought that the bacterial infections were caused by a select handful of bacteria such as S. aureus, H. influenzae, B. cenocepacia, and P. aeruginosa. With the advent of PCR and molecular techniques, the polymicrobial nature of the CF lung became evident. The CF lung contains numerous bacteria and the communities are diverse and unique to each patient. The total complexity of the bacterial infections is still being determined. In addition, only a few members of the fungal communities have been identified. Much of the fungal community composition is still a mystery. This dissertation addresses this gap in knowledge. A snap shot of CF sputa bacterial community was obtained using the length heterogeneity-PCR community profiling technique. The profiles show that south Florida CF patients have a unique, diverse, and dynamic bacterial community which changes over time. The identities of the bacteria and fungi present were determined using the state-of-the-art 454 sequencing. Sequencing results show that the CF lung microbiome contains commonly cultured pathogenic bacteria, organisms considered a part of the healthy core biome, and novel organisms. Understanding the dynamic changes of these identified microbes will ultimately lead to better therapeutical interventions. Early detection is key in reducing the lung damage caused by chronic infections. Thus, there is a need for accurate and sensitive diagnostic tests. This issue was addressed by designing a bacterial diagnostic tool targeted towards CF pathogens using SPR. By identifying the organisms associated with the CF lung and understanding their community interactions, patients can receive better treatment and live longer.
Resumo:
Sexually-selected communication signals can be used by competing males to settle contests without incurring the costs of fighting. The ability to dynamically regulate the signal in a context-dependent manner can further minimize the costs of male aggressive interactions. Such is the case in the gymnotiform fish Brachyhypopomus gauderio, which, by coupling its electric organ discharge (EOD) waveform to endocrine systems with circadian, seasonal, and behavioral drivers, can regulate its signal to derive the greatest reproductive benefit. My dissertation research examined the functional role of the EOD plasticity observed in male B. gauderio and the physiological mechanisms that regulate the enhanced male EOD. To evaluate whether social competition drives the EOD changes observed during male-male interactions, I manipulated the number of males in breeding groups to create conditions that exemplified low and high competition and measured their EOD and steroid hormone levels. My results showed that social competition drives the enhancement of the EOD amplitude of male B. gauderio. In addition, changes in the EOD of males due to changes in their social environment were paralleled by changes in the levels of androgens and cortisol. I also examined the relationship between body size asymmetry, EOD waveform parameters, and aggressive physical behaviors during male-male interactions in B. gauderio, in order to understand more fully the role of EOD waveforms as reliable signals. While body size was the best determinant of dominance in male B. gauderio, EOD amplitude reliably predicted body condition, a composite of length and weight, for fish in good body condition. To further characterize the mechanisms underlying the relationship between male-male interactions and EOD plasticity, I identified the expression of the serotonin receptor 1A, a key player in the regulation of aggressive behavior, in the brains of B. gauderio. I also identified putative regulatory regions in this receptor in B. gauderio and other teleost fish, highlighting the presence of additional plasticity. In conclusion, male-male competition seems to be a strong selective driver in the evolution of the male EOD plasticity in B. gauderio via the regulatory control of steroid hormones and the serotonergic system.
Resumo:
Sexually-selected communication signals can be used by competing males to settle contests without incurring the costs of fighting. The ability to dynamically regulate the signal in a context-dependent manner can further minimize the costs of male aggressive interactions. Such is the case in the gymnotiform fish Brachyhypopomus gauderio, which, by coupling its electric organ discharge (EOD) waveform to endocrine systems with circadian, seasonal, and behavioral drivers, can regulate its signal to derive the greatest reproductive benefit. My dissertation research examined the functional role of the EOD plasticity observed in male B. gauderio and the physiological mechanisms that regulate the enhanced male EOD. To evaluate whether social competition drives the EOD changes observed during male-male interactions, I manipulated the number of males in breeding groups to create conditions that exemplified low and high competition and measured their EOD and steroid hormone levels. My results showed that social competition drives the enhancement of the EOD amplitude of male B. gauderio. In addition, changes in the EOD of males due to changes in their social environment were paralleled by changes in the levels of androgens and cortisol. I also examined the relationship between body size asymmetry, EOD waveform parameters, and aggressive physical behaviors during male-male interactions in B. gauderio, in order to understand more fully the role of EOD waveforms as reliable signals. While body size was the best determinant of dominance in male B. gauderio, EOD amplitude reliably predicted body condition, a composite of length and weight, for fish in good body condition. To further characterize the mechanisms underlying the relationship between male-male interactions and EOD plasticity, I identified the expression of the serotonin receptor 1A, a key player in the regulation of aggressive behavior, in the brains of B. gauderio. I also identified putative regulatory regions in this receptor in B. gauderio and other teleost fish, highlighting the presence of additional plasticity. In conclusion, male-male competition seems to be a strong selective driver in the evolution of the male EOD plasticity in B. gauderio via the regulatory control of steroid hormones and the serotonergic system.
Resumo:
A plant's reproductive biology exerts a significant influence on both population persistence within changing environments and successful establishment of new populations. However, the interaction between extrinsic (i.e. ecological) and intrinsic (i.e. genetic) factors also is an important driver of demographic performance for plant populations. It is light of this that I performed a multidisciplinary investigation of the breeding system, seed and seedling establishment dynamics, and population genetic structure of the endangered Caribbean vine Ipomoea microdactyla Griseb. (Convolvulaceae). The results from the breeding system study show individuals from Florida, USA and Andros Island, Bahamas to be self-incompatible. Plants from the two regions are cross-compatible but there is evidence for outbreeding depression in their progeny. Significant regional differences were found in floral traits and progeny traits that suggests incipient speciation for the Florida populations. The results from the seed and seedling establishment dynamics experiment demonstrate that the restoration of small populations in Florida via seed and seedling augmentation is a successful strategy. The demographic performance of the outplanted individuals was driven significantly by ecological factors (e.g. herbivory) rather than by genetic factors which emphasizes that the ecological context is very important for successful restoration attempts. The results from the population genetic study using an analysis of molecular variation (AMOVA) reveal significant differences in genetic variation among individuals from Florida, Andros, and Cuba. A Bayesian analysis of population genetic structuring coincided with the previous AMOVA results among the three regions. The Mantel test indicated significant 'isolation by distance' for these regional populations implying restricted gene flow over relatively short distances. Overall, the Florida populations had the lowest measures of genetic diversity which is most likely due to the effects of both colonization founder events and habitat fragmentation. The results of my study highlight the value of performing multidisciplinary studies in relation to species conservation as knowledge of both extrinsic and intrinsic factors can best guide decisions for species preservation.
Resumo:
Juvenile hormone (JH) is the central hormonal regulator of life-history trade-offs in many insects. In Aedes aegypti, JH regulates reproductive development after emergence. Little is known about JH's physiological functions after reproductive development is complete or JH's role in mediating life-history trade-offs. By examining the effect of hormones, nutrition, and mating on ovarian physiology during the previtellogenic resting stage, critical roles were determined for these factors in mediating life-history trade-offs and reproductive output. The extent of follicular resorption during the previtellogenic resting stage is dependent on nutritional quality. Feeding females a low quality diet during the resting stage causes the rate of follicular resorption to increase and reproductive output to decrease. Conversely, feeding females a high quality diet causes resorption to remain low. The extent of resorption can be increased by separating the ovaries from a source of JH or decreased by exogenous application of methoprene. Active caspases were localized to resorbing follicles indicating that an apoptosis-like mechanism participates in follicular resorption. Accumulations of neutral lipids and the accumulation of mRNA's integral to endocytosis and oocyte development such as the vitellogenin receptor (AaVgR), lipophorin receptor (AaLpRov), heavy-chain clathrin (AaCHC), and ribosomal protein L32 (rpL32) were also examined under various nutritional and hormonal conditions. The abundance of mRNA's and neutral lipid content increased within the previtellogenic ovary as mosquitoes were offered increasing sucrose concentrations or were treated with methoprene. These same nutritional and hormonal manipulations altered the extent of resorption after a blood meal indicating that the fate of follicles and overall fecundity depends, in part, on nutritional and hormonal status during the previtellogenic resting stage. Mating female mosquitoes also altered follicle quality and resorption similarly to nutrition or hormonal application and demonstrates that male accessory gland substances such as JH III passed to the female during copulation have a strong effect on ovarian physiology during the previtellogenic resting stage and can influence reproductive output. Taken together these results demonstrate that the previtellogenic resting stage is not an inactive period but is instead a period marked by extensive life-history and fitness trade-offs in response to nutrition, hormones and mating stimuli.
Resumo:
Although Mauritia flexuosa (Arecaceae) plays a pivotal role in the ecology and economy of the Amazon, and occurs in a variety of habitats, little is known about the influence of habitat on the reproductive biology of this palm. My dissertation focuses on the reproductive biology of M. flexuosa in three habitats in Roraima, Brazil: undisturbed forest, undisturbed forest-savanna ecotone, and savanna disturbed by plantations of the exotic tree, Acacia mangium. First, I calculated sex ratios and linked precipitation patterns with phenology. Sex ratios were female-biased. Precipitation was negatively associated with flowering, and positively associated with fruiting. Habitat appears to have no significant influence on phenology of M. flexuosa, although short-term climate variation may affect phenology of this species. Second, I examined floral biology, observed floral visitors, and performed exclusion experiments to determine the pollination system of M. flexuosa. Fruit set did not differ significantly between the visitor exclusion treatment and the control, but was significantly lowest in the wind + visitor exclusion treatment, suggesting that this dioecious palm is anemophilous, independent of habitat. Third, I identified the abiotic and biotic factors explaining variation in fruit mass, seed mass, seed number per fruit, and total fruit yield among habitats. Soil moisture and flooding during the wet season were the best predictors of fruit and seed output. The number of leaves, diameter at breast height, and height were all accurate predictors of reproductive output, but crown volume did not accurately predict fruit yields. Results re-evaluate traditional assumptions about wind-pollination in the tropics, and highlight abiotic and biotic factors responsible for variation in reproductive output of M. flexuosa, with implications for effective management of this palm. Finally, I interviewed harvesters and vendors to document the traditional knowledge and market dynamics of the fruit of M. flexuosa, buriti. Traditional knowledge corroborated results from scientific studies. Vendors argued that the price of buriti must increase, and must fluctuate with varying supply. With appropriate economic incentives to vendors/harvesters, Roraima may expand its market infrastructure for buriti, effectively stimulating the regional economy and practicing sustainable harvesting.
Resumo:
Juvenile hormone (JH) is crucial for the stimulation and progression of oogenesis from emergence to the previtellogenic resting stage in female Aedes aegypti mosquitoes. Juvenile hormone has been suggested to be among the many substances transferred form the male accessory glands to the female during copulation but no evidence for this has previously been provided. Quantification of JH III in the accessory glands of males and in the bursae copulatrix and spermathecae of mated females was performed using HPLC-FD. These amounts were measured in relation to the quality of adult sugar feeding in the male. The effect of this variable transfer was measured on two fecundity markers that occur during the previtellogenic stage of oogenesis, specifically follicular resorption and ovarian lipids. Male mosquitoes provided with 20% sucrose contained ~ 60% greater amount of JH in the accessory glands and transferred 4 fmol more JH during copulation than males provided with 3% sucrose. These differences resulted in a nearly 40% reduction in follicular resorption and an approximate 3-fold increase in lipid content in the ovaries of mated females during the previtellogenic stage. These results suggest that the contribution of JH from the male is dependent on the quality of nutrition obtained during adult sugar feeding. Female fecundity is likely responsive to these variable previtellogenic effects, possibly resulting in a difference in the number of eggs laid. Improvements in female reproductive output may have wider implications in the transmission of diseases attributed to this important arbovirus vector.