2 resultados para MAGMATISM
em Digital Commons at Florida International University
Resumo:
Subduction zone magmatism is an important and extensively studied topic in igneous geochemistry. Recent studies focus on from where arc magmas are generated, how subduction components (fluids or melts) are fluxed into the source of the magmas, and whether or how the subduction components affect partial melting processes beneath volcanic arcs at convergent boundaries. ^ At 39.5°S in the Central Southern Volcanic Zone of the Andes, Volcano Villarrica is surrounded by a suite of Small Eruptive Centers (SEC). The SECs are located mostly to the east and northeast of the stratovolcano and aligned along the Liquine-Ofqui Fault Zone, the major fracture system in this area. Former studies observed the geochemical patterns of the SECs differ distinctively from those of V. Villarrica and suggested there may be a relationship between the compositions of the volcanic units and their edifice sizes. This work is a comprehensive geochemical study on the SECs near V. Villarrica, using a variety of geochemical tracers and tools including major, trace and REE elements, Li-Be-B elements, Sr-Nd-Pb isotopes and short-lived isotopes such as U-series and 10Be. In this work, systematic differences between the elemental and isotopic compositions of the SECs and those of V. Villarrica are revealed and more importantly, modeled in terms of magmatic processes occurring at continental arc margins. Detailed modeling calculations in this work reconstruct chemical compositions of the primary magmas, source compositions, compositions and percentages of different subduction endmembers mixed into the source, degrees of partial melting and different time scales of the SECs and V. Villarrica, respectively. Geochemical characteristics and possible origins of the two special SECs—andesitic Llizan, with crustal signatures, and Rucapillan, to the northwest toward the trench, are also discussed in this work. ^
Resumo:
The Andean Southern Volcanic Zone (SVZ) is a vast and complex continental arc that has been studied extensively to provide an understanding of arc-magma genesis, the origin and chemical evolution of the continental crust, and geochemical compositions of volcanic products. The present study focuses on distinguishing the magma/sub-arc crustal interaction of eruptive products from the Azufre-Planchon-Peteroa (APP 35°15'S) volcanic center and other major centers in the Central SVZ (CSVZ 37°S–42°S), Transitional SVZ (TSVZ 34.3–37.0°S), and Northern SVZ (NSVZ 33°S–34°30'S). New Hf and Nd isotopic and trace element data for SVZ centers are consistent with former studies that these magmas experienced variable depths of crystal fractionation, and that crustal assimilation is restricted to the lower crustal depths with an apparent role of garnet. Thermobarometric calculations applied to magma compositions constrain the depth of magma separation from mantle sources in all segments of the SVZ to(70-90 km). Magmatic separation at the APP complex occurs at an average depth of ~50 km which is confined to the mantle lithosphere and the base of the crust suggesting localized thermal abrasion both reservoirs. Thermobarometric calculations indicate that CSVZ primary magmas arise from a similar average depth of (~54 km) which confines magma separation to the asthenospheric mantle. The northwards along-arc Sr-Nd-Hf isotopic data and LREE enrichment accompanied with HREE depletion of SVZ mafic magmas correlates well with northward increasing crustal thickness and decreasing primary melt separation from mantle source regions indicating an increased involvement of lower crustal components in SVZ magma petrogenesis. ^ The study concludes that the development of mature subduction zones over millions of years of continuous magmatism requires that mafic arc derived melts stagnate at lower crustal levels due to density similarities and emplace at lower crustal depths. Basaltic underplating creates localized hot zone environments below major magmatic centers. These regions of high temperature/partial melting, and equilibration with underplated mafic rocks provides the mechanism that controls trace element and isotopic variability of primary magmas of the TSVZ and NSVZ from their baseline CSVZ-like precursors.^