2 resultados para Lower and Upper Solutions

em Digital Commons at Florida International University


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Green Revolution has led to a threefold growth in food production in the last 50 to 75 years, but increases in crop production have required a concurrent increase in the use of inorganic phosphorus as fertilizer. A sustainable phosphorus supply is not assured, though, and food production depends on mineral phosphorus supplies that are nonrenewable and are being depleted. Phosphorus is effectively a nonsubstitutable necessity for all life. Because mineral phosphorus deposits are not distributed evenly, future phosphorus scarcity may have national security implications. Some projections show economically viable mineral reserves becoming depleted within a few decades. Phosphorus-induced food shortages are therefore a possibility, particularly in developing countries where farmers are more vulnerable to volatile fertilizer prices. Sustainable solutions to such future challenges exist, and involve closing the loop on the human phosphorus cycle. We review the current state of knowledge about human phosphorus use and dependence and present examples of these sustainable solutions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electrical energy is an essential resource for the modern world. Unfortunately, its price has almost doubled in the last decade. Furthermore, energy production is also currently one of the primary sources of pollution. These concerns are becoming more important in data-centers. As more computational power is required to serve hundreds of millions of users, bigger data-centers are becoming necessary. This results in higher electrical energy consumption. Of all the energy used in data-centers, including power distribution units, lights, and cooling, computer hardware consumes as much as 80%. Consequently, there is opportunity to make data-centers more energy efficient by designing systems with lower energy footprint. Consuming less energy is critical not only in data-centers. It is also important in mobile devices where battery-based energy is a scarce resource. Reducing the energy consumption of these devices will allow them to last longer and re-charge less frequently. Saving energy in computer systems is a challenging problem. Improving a system's energy efficiency usually comes at the cost of compromises in other areas such as performance or reliability. In the case of secondary storage, for example, spinning-down the disks to save energy can incur high latencies if they are accessed while in this state. The challenge is to be able to increase the energy efficiency while keeping the system as reliable and responsive as before. This thesis tackles the problem of improving energy efficiency in existing systems while reducing the impact on performance. First, we propose a new technique to achieve fine grained energy proportionality in multi-disk systems; Second, we design and implement an energy-efficient cache system using flash memory that increases disk idleness to save energy; Finally, we identify and explore solutions for the page fetch-before-update problem in caching systems that can: (a) control better I/O traffic to secondary storage and (b) provide critical performance improvement for energy efficient systems.