20 resultados para Logistic regression mixture models
em Digital Commons at Florida International University
Resumo:
This paper uses self-efficacy to predict the success of women in introductory physics. We show how sequential logistic regression demonstrates the predictive ability of self-efficacy, and reveals variations with type of physics course. Also discussed are the sources of self-efficacy that have the largest impact on predictive ability.
Resumo:
Despite a long history of prevention efforts and federal laws prohibiting the consumption of alcohol for those below the age of 21 years, underage drinking continues at both a high prevalence rate and high incidence rate. The purpose of this research study is to explain underage drinking of alcohol conditioned by perception of peer drinking. An acquisition model is conjectured and then a relationship within the model is explained with a national sample of students. From a developmental perspective, drinking alcohol is acquired in a reasonably ordered fashion that reflects the influences over time of the culture, family, and peers. The study measures perceptions of alcohol drinking during early adolescence when alcohol use begins the maintenance phase of the behavior. The correlation between drinking alcohol and perception of classmate drinking can be described via social learning theory. Simultaneously the moderating effects of grade level, gender, and race/ethnicity are used to explain differences between groups. Multilevel logistic regression was used to analyze the relations. The researcher found support for an association between adolescent drinking and perceptions of classmate drinking. Gender and grade level moderated the relation. African-Americans consistently demonstrated less drinking and less perception of classmate drinking than either whites or other students not white nor African-American. The importance of a better understanding of the process of acquiring drinking behaviors is discussed in relation to future research models with longitudinal data. ^
Financial aid and the persistence of associate of arts graduates transferring to a senior university
Resumo:
This study examined the effects of financial aid on the persistence of associate of arts graduates transferring to a senior university in one of four consecutive fall semesters (1998-2001). Situated in an international metropolitan area in the southeastern United States, the institution where the study was conducted is a large public research university identified as a Hispanic Serving Institution. Archival databases served as the source of information on the academic and social background of the 4,669 participants in the study. Data from institutional financial aid records were pooled with the data in the student administrative system.^ For purposes of this study, persistence was defined as ongoing progress until completing the baccalaureate degree. Student social background variables used in the study were gender, ethnicity, age, and income, with GPA and part-time or full-time enrollment status being the academic variables. Amount and type of aid, including grants, loans, scholarships, and work study were incorporated in the models to determine the effect of financial aid on the persistence of these transfer students. Because the dependent variable persistence had three possible outcomes (graduated, still enrolled, dropped out) multinomial logistic regression was the appropriate technique for analyzing the data; four multinomial models were employed in the analysis.^ Findings suggest that grants awarded based on the financial need of students and loans were effective in encouraging the persistence of students, but scholarships and work study were not effective.^
Resumo:
The high concentration of underprepared students in community colleges presents a challenge to educators, policy-makers, and researchers. All have pointed to low completion rates and caution that institutional practices and policy ought to focus on improving retention and graduation rates. However, a multitude of inhibiting factors limits the educational opportunities of underprepared community college students. Using Tinto's (1993) and Astin's (1999) models of student departure as the primary theoretical framework, as well as faculty mentoring as a strategy to impact student performance and retention, the purpose of this study was to determine whether a mentoring program designed to promote greater student-faculty interactions with underprepared community college students is predictive of higher retention for such students. While many studies have documented the positive effects of faculty mentoring with 4-year university students, very few have examined faculty mentoring with underprepared community college students (Campbell and Campbell, 1997; Nora & Crisp, 2007). In this study, the content of student-faculty interactions captured during the mentoring experience was operationalized into eight domains. Faculty members used a log to record their interactions with students. During interactions they tried to help students develop study skills, set goals, and manage their time. They also provided counseling, gave encouragement, nurtured confidence, secured financial aid/grants/scholarships, and helped students navigate their first semester at college. Logistic regression results showed that both frequency and content of faculty interactions were important predictors of retention. Students with high levels of faculty interactions in the area of educational planning and personal/family concerns were more likely to persist. Those with high levels of interactions in time-management and academic concerns were less likely to persist. Interactions that focused on students' poor grades, unpreparedness for class, or excessive absences were predictive of dropping out. Those that focused on developing a program of study, creating a road map to completion, or students' self-perceptions, feelings of self-efficacy, and personal control were predictive of persistence.
Resumo:
Despite research showing the benefits of glycemic control, it remains suboptimal among adults with diabetes in the United States. Possible reasons include unaddressed risk factors as well as lack of awareness of its immediate and long term consequences. The objectives of this study were to, using cross-sectional data, (1) ascertain the association between suboptimal (Hemoglobin A1c (HbA1c) .7%), borderline (HbA1c 7-8.9%), and poor (HbA1c .9%) glycemic control and potentially new risk factors (e.g. work characteristics), and (2) assess whether aspects of poor health and well-being such as poor health related quality of life (HRQOL), unemployment, and missed-work are associated with glycemic control; and (3) using prospective data, assess the relationship between mortality risk and glycemic control in US adults with type 2 diabetes. Data from the 1988-1994 and 1999-2004 National Health and Nutrition Examination Surveys were used. HbA1c values were used to create dichotomous glycemic control indicators. Binary logistic regression models were used to assess relationships between risk factors, employment status and glycemic control. Multinomial logistic regression analyses were conducted to assess relationships between glycemic control and HRQOL variables. Zero-inflated Poisson regression models were used to assess relationships between missed work days and glycemic control. Cox-proportional hazard models were used to assess effects of glycemic control on mortality risk. Using STATA software, analyses were weighted to account for complex survey design and non-response. Multivariable models adjusted for socio-demographics, body mass index, among other variables. Results revealed that being a farm worker and working over 40 hours/week were risk factors for suboptimal glycemic control. Having greater days of poor mental was associated with suboptimal, borderline, and poor glycemic control. Having greater days of inactivity was associated with poor glycemic control while having greater days of poor physical health was associated with borderline glycemic control. There were no statistically significant relationships between glycemic control, self-reported general health, employment, and missed work. Finally, having an HbA1c value less than 6.5% was protective against mortality. The findings suggest that work-related factors are important in a person’s ability to reach optimal diabetes management levels. Poor glycemic control appears to have significant detrimental effects on HRQOL.^
Resumo:
Traffic from major hurricane evacuations is known to cause severe gridlocks on evacuation routes. Better prediction of the expected amount of evacuation traffic is needed to improve the decision-making process for the required evacuation routes and possible deployment of special traffic operations, such as contraflow. The objective of this dissertation is to develop prediction models to predict the number of daily trips and the evacuation distance during a hurricane evacuation. ^ Two data sets from the surveys of the evacuees from Hurricanes Katrina and Ivan were used in the models' development. The data sets included detailed information on the evacuees, including their evacuation days, evacuation distance, distance to the hurricane location, and their associated socioeconomic characteristics, including gender, age, race, household size, rental status, income, and education level. ^ Three prediction models were developed. The evacuation trip and rate models were developed using logistic regression. Together, they were used to predict the number of daily trips generated before hurricane landfall. These daily predictions allowed for more detailed planning over the traditional models, which predicted the total number of trips generated from an entire evacuation. A third model developed attempted to predict the evacuation distance using Geographically Weighted Regression (GWR), which was able to account for the spatial variations found among the different evacuation areas, in terms of impacts from the model predictors. All three models were developed using the survey data set from Hurricane Katrina and then evaluated using the survey data set from Hurricane Ivan. ^ All of the models developed provided logical results. The logistic models showed that larger households with people under age six were more likely to evacuate than smaller households. The GWR-based evacuation distance model showed that the household with children under age six, income, and proximity of household to hurricane path, all had an impact on the evacuation distances. While the models were found to provide logical results, it was recognized that they were calibrated and evaluated with relatively limited survey data. The models can be refined with additional data from future hurricane surveys, including additional variables, such as the time of day of the evacuation. ^
Resumo:
Consistent condom use among high risk groups such as female sex workers (FSWs) remains low. Adolescent female sex workers are especially at higher risk for HIV/STI infections. However, few published studies have compared the sexual risk negotiations among adolescent, emerging adult, and older age groups or the extent a manager’s advice about condom use is associated with an FSW’s age. Of 1,388 female bar/spa workers surveyed in the southern Philippines, 791 FSW who traded sex in the past 6 months were included in multivariable logistic regression models. The oldest FSWs (aged 36–48) compared to adolescent FSWs (aged 14–17) were 3.3 times more likely to negotiate condoms when clients refused condom use. However, adolescent FSWs received more advice from their managers to convince clients to use condoms or else to refuse sex, compared to older FSWs. Both adolescent and the oldest FSWs had elevated sexually transmitted infections (STIs) and inconsistent condom use compared to other groups. Having a condom rule at the establishment was positively associated with condom negotiation. Factors such as age, the advice managers give to their workers, and the influence of a condom use rule at the establishment need to be considered when delivering HIV/STI prevention interventions.
Resumo:
Background Diabetes has reached epidemic proportions in the United States, particularly among minorities, and if improperly managed can lead to medical complications and death. Healthcare providers play vital roles in communicating standards of care, which include guidance on diabetes self-management. The background of the client may play a role in the patient-provider communication process. The aim of this study was to determine the association between medical advice and diabetes self care management behaviors for a nationally representative sample of adults with diabetes. Moreover, we sought to establish whether or not race/ethnicity was a modifier for reported medical advice received and diabetes self-management behaviors. Methods We analyzed data from 654 adults aged 21 years and over with diagnosed diabetes [130 Mexican-Americans; 224 Black non-Hispanics; and, 300 White non-Hispanics] and an additional 161 with 'undiagnosed diabetes' [N = 815(171 MA, 281 BNH and 364 WNH)] who participated in the National Health and Nutrition Examination Survey (NHANES) 2007-2008. Logistic regression models were used to evaluate whether medical advice to engage in particular self-management behaviors (reduce fat or calories, increase physical activity or exercise, and control or lose weight) predicted actually engaging in the particular behavior and whether the impact of medical advice on engaging in the behavior differed by race/ethnicity. Additional analyses examined whether these relationships were maintained when other factors potentially related to engaging in diabetes self management such as participants' diabetes education, sociodemographics and physical characteristics were controlled. Sample weights were used to account for the complex sample design. Results Although medical advice to the patient is considered a standard of care for diabetes, approximately one-third of the sample reported not receiving dietary, weight management, or physical activity self-management advice. Participants who reported being given medical advice for each specific diabetes self-management behaviors were 4-8 times more likely to report performing the corresponding behaviors, independent of race. These results supported the ecological model with certain caveats. Conclusions Providing standard medical advice appears to lead to diabetes self-management behaviors as reported by adults across the United States. Moreover, it does not appear that race/ethnicity influenced reporting performance of the standard diabetes self-management behavior. Longitudinal studies evaluating patient-provider communication, medical advice and diabetes self-management behaviors are needed to clarify our findings.
Resumo:
Understanding who evacuates and who does not has been one of the cornerstones of research on the pre-impact phase of both natural and technological hazards. Its history is rich in descriptive illustrations focusing on lists of characteristics of those who flee to safety. Early models of evacuation focused almost exclusively on the relationship between whether warnings were heard and ultimately believed and evacuation behavior. How people came to believe these warnings and even how they interpreted the warnings were not incorporated. In fact, the individual seemed almost removed from the picture with analysis focusing exclusively on external measures. ^ This study built and tested a more comprehensive model of evacuation that centers on the decision-making process, rather than decision outcomes. The model focused on three important factors that alter and shape the evacuation decision-making landscape. These factors are: individual level indicators which exist independently of the hazard itself and act as cultural lenses through which information is heard, processed and interpreted; hazard specific variables that directly relate to the specific hazard threat; and risk perception. The ultimate goal is to determine what factors influence the evacuation decision-making process. Using data collected for 1998's Hurricane Georges, logistic regression models were used to evaluate how well the three main factors help our understanding of how individuals come to their decisions to either flee to safety during a hurricane or remain in their homes. ^ The results of the logistic regression were significant emphasizing that the three broad types of factors tested in the model influence the decision making process. Conclusions drawn from the data analysis focus on how decision-making frames are different for those who can be designated “evacuators” and for those in evacuation zones. ^
Resumo:
The purpose of this study was threefold: first, to investigate variables associated with learning, and performance as measured by the National Council Licensure Examination for Registered Nurses (NCLEX-RN). The second purpose was to validate the predictive value of the Assessment Technologies Institute (ATI) achievement exit exam, and lastly, to provide a model that could be used to predict performance on the NCLEX-RN, with implications for admission and curriculum development. The study was based on school learning theory, which implies that acquisition in school learning is a function of aptitude (pre-admission measures), opportunity to learn, and quality of instruction (program measures). Data utilized were from 298 graduates of an associate degree nursing program in the Southeastern United States. Of the 298 graduates, 142 were Hispanic, 87 were Black, non-Hispanic, 54 White, non-Hispanic, and 15 reported as Others. The graduates took the NCLEX-RN for the first time during the years 2003–2005. This study was a predictive, correlational design that relied upon retrospective data. Point biserial correlations, and chi-square analyses were used to investigate relationships between 19 selected predictor variables and the dichotomous criterion variable, NCLEX-RN. The correlation and chi square findings indicated that men did better on the NCLEX-RN than women; Blacks had the highest failure rates, followed by Hispanics; older students were more likely to pass the exam than younger students; and students who passed the exam started and completed the nursing program with a higher grade point average, than those who failed the exam. Using logistic regression, five statistical models that used variables associated with learning and student performance on the NCLEX-RN were tested with a model adapted from Bloom's (1976) and Carroll's (1963) school learning theories. The derived model included: NCLEX-RNsuccess = f (Nurse Entrance Test and advanced medical-surgical nursing course grade achieved). The model demonstrates that student performance on the NCLEX-RN can be predicted by one pre-admission measure, and a program measure. The Assessment Technologies Institute achievement exit exam (an outcome measure) had no predictive value for student performance on the NCLEX-RN. The model developed accurately predicted 94% of the student's successful performance on the NCLEX-RN.
Resumo:
Background. Lack of adherence to dietary and physical activity guidelines has been linked to an increase in chronic diseases in the United States (US). The aim of this study was to assess the association of lifestyle behaviors with self-rated health (SRH). Methods. This cross-sectional study used self-reported data from Living for Health Program ( 1,701) which was conducted from 2008 to 2012 in 190 health fair events in South Florida, US. Results. Significantly higher percent of females as compared to males were classified as obese (35.4% versus 27.0%), reported poor/fair SRH (23.4% versus 15.0%), and were less physically active (33.9% versus 25.4%). Adjusted logistic regression models indicated that both females and males were more likely to report poor/fair SRH if they consumed 2 servings of fruits and vegetables per day (, 95% CI 1.30–3.54; , 95% CI 1.12–7.35, resp.) and consumed mostly high fat foods (, 95% CI 1.03–2.43; , 95% CI 1.67–2.43, resp.). The association of SRH with less physical activity was only significant in females (, 95% CI 1.17–2.35). Conclusion. Gender differences in health behaviors should be considered in designing and monitoring lifestyle interventions to prevent cardiovascular diseases.
Resumo:
Background: Obesity, a growing epidemic, is a preventable risk factor for cardiometabolic diseases. Obesity and cardiometabolic diseases affect Hispanics and African Americans more than non-Hispanic Caucasians. This study examined the relationship among race/ethnicity, obesity diagnostic measures (body mass index, waist circumference, subscapular and triceps skinfold thickness), and cardiometabolic risk factors (hyperglycemia, high, non-high-density lipoprotein cholesterol, low, high-density lipoprotein cholesterol, and hypertension) for adults across the United States. Methods: Using data from two-cycles of the National Health and Examination Survey (NHANES) 2007-2010, and accounting for the complex sample design, logistic regression models were conducted comparing obesity indicators in Mexican Americans, other Hispanics, and Black non-Hispanics, with White non-Hispanics and their associations with the presence of cardiometabolic diseases. Results: Differences by race/ethnicity were found for subscapular skinfold thickness and hyperglycemia. Waist circumference and subscapular skinfold were positively associated with the presence of hyperglycemia; dyslipidemia, and hypertension across race/ ethnicity, adjusting for age, gender, smoking, physical activity, education, income to poverty index, and health insurance. Race/ ethnicity did not influence the association of any obesity indicators with the tested cardiometabolic diseases. All obesity measures except triceps skinfold were associated with hyperglycemia. Conclusions: We suggest that subscapular skinfold thickness be considered as an inexpensive non-intrusive screening tool for cardiometabolic risk factors in an adult US population
Resumo:
Background: Diabetes has reached epidemic proportions in the United States, particularly among minorities, and if improperly managed can lead to medical complications and death. Healthcare providers play vital roles in communicating standards of care, which include guidance on diabetes self-management. The background of the client may play a role in the patient-provider communication process. The aim of this study was to determine the association between medical advice and diabetes self care management behaviors for a nationally representative sample of adults with diabetes. Moreover, we sought to establish whether or not race/ethnicity was a modifier for reported medical advice received and diabetes self-management behaviors. Methods: We analyzed data from 654 adults aged 21 years and over with diagnosed diabetes [130 MexicanAmericans; 224 Black non-Hispanics; and, 300 White non-Hispanics] and an additional 161 with ‘undiagnosed diabetes’ [N = 815(171 MA, 281 BNH and 364 WNH)] who participated in the National Health and Nutrition Examination Survey (NHANES) 2007-2008. Logistic regression models were used to evaluate whether medical advice to engage in particular self-management behaviors (reduce fat or calories, increase physical activity or exercise, and control or lose weight) predicted actually engaging in the particular behavior and whether the impact of medical advice on engaging in the behavior differed by race/ethnicity. Additional analyses examined whether these relationships were maintained when other factors potentially related to engaging in diabetes self management such as participants’ diabetes education, sociodemographics and physical characteristics were controlled. Sample weights were used to account for the complex sample design. Results: Although medical advice to the patient is considered a standard of care for diabetes, approximately onethird of the sample reported not receiving dietary, weight management, or physical activity self-management advice. Participants who reported being given medical advice for each specific diabetes self-management behaviors were 4-8 times more likely to report performing the corresponding behaviors, independent of race. These results supported the ecological model with certain caveats. Conclusions: Providing standard medical advice appears to lead to diabetes self-management behaviors as reported by adults across the United States. Moreover, it does not appear that race/ethnicity influenced reporting performance of the standard diabetes self-management behavior. Longitudinal studies evaluating patient-provider communication, medical advice and diabetes self-management behaviors are needed to clarify our findings.
Resumo:
Objectives: We investigated the relationship among factors predicting inadequate glucose control among 182 Cuban-American adults (Females=110, Males=72) with type 2 diabetes mellitus (CAA). Study Design: Cross-sectional study of CAA from a randomized mailing list in two counties of South Florida Methods: Fasted blood parameters and anthropometric measures were collected during the study. BMI was calculated (kg/ m2). Characteristics and diabetes care of CAA were self-reported Participants were screened by trained interviewers for heritage and diabetes status (inclusion criteria: self-reported having type 2 diabetes; age 35 years, male and female; not pregnant or lactating; no thyroid disorders; no major psychiatric disorders). Participants signed informed consent form. Statistical analyses used SPSS and included descriptive statistic, multiple logistic and ordinal logistic regression models, where all CI 95%. Results: Eighty-eight percent of CAA had BMI of ≥ 25 kg/ m2. Only 54% reported having a diet prescribed/told to schedule meals. We found CAA told to schedule meals were 3.62 more likely to plan meals (1.81, 7.26), p<0.001) and given a prescribed diet, controlling for age, corresponded with following a meal plan OR 4.43 (2.52, 7.79, p<0.001). The overall relationship for HbA1c < 8.5 to following a meal plan was OR 9.34 (2.84, 30.7. p<0.001). Conclusions: The advantage of having a medical professional prescribe a diet seems to be an important environmental support factor in this sample’s diabetes care, since obesity rates are well above the national average. Nearly half CAA are not given dietary guidance, yet our results indicate CAA may improve glycemic control by receiving dietary instructions.
Resumo:
Public school choice education policy attempts to create an education marketplace. Although school choice research has focused on the parent role in the school choice process, little is known about parents served by low-performing schools. Following market theory, students attending low-performing schools should be the primary students attempting to use school choice policy to access high performing schools rather than moving to a better school. However, students remain in these low-performing schools. This study took place in Miami-Dade County, which offers a wide variety of school choice options through charter schools, magnet schools, and open-choice schools. ^ This dissertation utilized a mixed-methods design to examine the decision-making process and school choice options utilized by the parents of students served by low-performing elementary schools in Miami-Dade County. Twenty-two semi-structured interviews were conducted with the parents of students served by low-performing schools. Binary logistic regression models were fitted to the data to compare the demographic characteristics, academic achievement and distance from alternative schooling options between transfers and non-transfers. Multinomial logistic regression models were fitted to the data to evaluate how demographic characteristics, distance to transfer school, and transfer school grade influenced the type of school a transfer student chose. A geographic analysis was conducted to determine how many miles students lived from alternative schooling options and the miles transfer students lived away from their transfer school. ^ The findings of the interview data illustrated that parents’ perceived needs are not being adequately addressed by state policy and county programs. The statistical analysis found that students from higher socioeconomic social groups were not more likely to transfer than students from lower socioeconomic social groups. Additionally, students who did transfer were not likely to end up at a high achieving school. The findings of the binary logistic regression demonstrated that transfer students were significantly more likely to live near alternative school options.^