2 resultados para Load Distribution.
em Digital Commons at Florida International University
Resumo:
Lateral load distribution factor is a key factor for designing and analyzing curved steel I-girder bridges. In this dissertation, the effects of various parameters on moment and shear distribution for curved steel I-girder bridges were studied using the Finite Element Method (FEM). The parameters considered in the study were: radius of curvature, girder spacing, overhang, span length, number of girders, ratio of girder stiffness to overall bridge stiffness, slab thickness, girder longitudinal stiffness, cross frame spacing, and girder torsional inertia. The variations of these parameters were based on the statistical analysis of the real bridge database, which was created by extracting data from existing or newly designed curved steel I-girder bridge plans collected all over the nation. A hypothetical bridge superstructure model that was made of all the mean values of the data was created and used for the parameter study. ^ The study showed that cross frame spacing and girder torsional inertia had negligible effects. Other parameters had been identified as key parameters. Regression analysis was conducted based on the FEM analysis results and simplified formulas for predicting positive moment, negative moment, and shear distribution factors were developed. Thirty-three real bridges were analyzed using FEM to verify the formulas. The ratio of the distribution factor obtained from the formula to the one obtained from the FEM analysis, which was referred to as the g-ratio, was examined. The results showed that the standard deviation of the g-ratios was within 0.04 to 0.06 and the mean value of the g-ratios was greater than unity by one standard deviation. This indicates that the formulas are conservative in most cases but not overly conservative. The final formulas are similar in format to the current American Association of State Highway and Transportation Officials (AASHTO) Load Resistance and Factor Design (LRFD) specifications. ^ The developed formulas were compared with other simplified methods. The outcomes showed that the proposed formulas had the most accurate results among all methods. ^ The formulas developed in this study will assist bridge engineers and researchers in predicting the actual live load distribution in horizontally curved steel I-girder bridges. ^
Resumo:
In recent years, the internet has grown exponentially, and become more complex. This increased complexity potentially introduces more network-level instability. But for any end-to-end internet connection, maintaining the connection's throughput and reliability at a certain level is very important. This is because it can directly affect the connection's normal operation. Therefore, a challenging research task is to improve a network's connection performance by optimizing its throughput and reliability. This dissertation proposed an efficient and reliable transport layer protocol (called concurrent TCP (cTCP)), an extension of the current TCP protocol, to optimize end-to-end connection throughput and enhance end-to-end connection fault tolerance. The proposed cTCP protocol could aggregate multiple paths' bandwidth by supporting concurrent data transfer (CDT) on a single connection. Here concurrent data transfer was defined as the concurrent transfer of data from local hosts to foreign hosts via two or more end-to-end paths. An RTT-Based CDT mechanism, which was based on a path's RTT (Round Trip Time) to optimize CDT performance, was developed for the proposed cTCP protocol. This mechanism primarily included an RTT-Based load distribution and path management scheme, which was used to optimize connections' throughput and reliability. A congestion control and retransmission policy based on RTT was also provided. According to experiment results, under different network conditions, our RTT-Based CDT mechanism could acquire good CDT performance. Finally a CWND-Based CDT mechanism, which was based on a path's CWND (Congestion Window), to optimize CDT performance was introduced. This mechanism primarily included: a CWND-Based load allocation scheme, which assigned corresponding data to paths based on their CWND to achieve aggregate bandwidth; a CWND-Based path management, which was used to optimize connections' fault tolerance; and a congestion control and retransmission management policy, which was similar to regular TCP in its separate path handling. According to corresponding experiment results, this mechanism could acquire near-optimal CDT performance under different network conditions.