4 resultados para Load Balancing
em Digital Commons at Florida International University
Resumo:
The research presented in this dissertation is comprised of several parts which jointly attain the goal of Semantic Distributed Database Management with Applications to Internet Dissemination of Environmental Data. ^ Part of the research into more effective and efficient data management has been pursued through enhancements to the Semantic Binary Object-Oriented database (Sem-ODB) such as more effective load balancing techniques for the database engine, and the use of Sem-ODB as a tool for integrating structured and unstructured heterogeneous data sources. Another part of the research in data management has pursued methods for optimizing queries in distributed databases through the intelligent use of network bandwidth; this has applications in networks that provide varying levels of Quality of Service or throughput. ^ The application of the Semantic Binary database model as a tool for relational database modeling has also been pursued. This has resulted in database applications that are used by researchers at the Everglades National Park to store environmental data and to remotely-sensed imagery. ^ The areas of research described above have contributed to the creation TerraFly, which provides for the dissemination of geospatial data via the Internet. TerraFly research presented herein ranges from the development of TerraFly's back-end database and interfaces, through the features that are presented to the public (such as the ability to provide autopilot scripts and on-demand data about a point), to applications of TerraFly in the areas of hazard mitigation, recreation, and aviation. ^
Resumo:
A wireless mesh network is a mesh network implemented over a wireless network system such as wireless LANs. Wireless Mesh Networks(WMNs) are promising for numerous applications such as broadband home networking, enterprise networking, transportation systems, health and medical systems, security surveillance systems, etc. Therefore, it has received considerable attention from both industrial and academic researchers. This dissertation explores schemes for resource management and optimization in WMNs by means of network routing and network coding.^ In this dissertation, we propose three optimization schemes. (1) First, a triple-tier optimization scheme is proposed for load balancing objective. The first tier mechanism achieves long-term routing optimization, and the second tier mechanism, using the optimization results obtained from the first tier mechanism, performs the short-term adaptation to deal with the impact of dynamic channel conditions. A greedy sub-channel allocation algorithm is developed as the third tier optimization scheme to further reduce the congestion level in the network. We conduct thorough theoretical analysis to show the correctness of our design and give the properties of our scheme. (2) Then, a Relay-Aided Network Coding scheme called RANC is proposed to improve the performance gain of network coding by exploiting the physical layer multi-rate capability in WMNs. We conduct rigorous analysis to find the design principles and study the tradeoff in the performance gain of RANC. Based on the analytical results, we provide a practical solution by decomposing the original design problem into two sub-problems, flow partition problem and scheduling problem. (3) Lastly, a joint optimization scheme of the routing in the network layer and network coding-aware scheduling in the MAC layer is introduced. We formulate the network optimization problem and exploit the structure of the problem via dual decomposition. We find that the original problem is composed of two problems, routing problem in the network layer and scheduling problem in the MAC layer. These two sub-problems are coupled through the link capacities. We solve the routing problem by two different adaptive routing algorithms. We then provide a distributed coding-aware scheduling algorithm. According to corresponding experiment results, the proposed schemes can significantly improve network performance.^
Resumo:
Unequaled improvements in processor and I/O speeds make many applications such as databases and operating systems to be increasingly I/O bound. Many schemes such as disk caching and disk mirroring have been proposed to address the problem. In this thesis we focus only on disk mirroring. In disk mirroring, a logical disk image is maintained on two physical disks allowing a single disk failure to be transparent to application programs. Although disk mirroring improves data availability and reliability, it has two major drawbacks. First, writes are expensive because both disks must be updated. Second, load balancing during failure mode operation is poor because all requests are serviced by the surviving disk. Distorted mirrors was proposed to address the write problem and interleaved declustering to address the load balancing problem. In this thesis we perform a comparative study of these two schemes under various operating modes. In addition we also study traditional mirroring to provide a common basis for comparison.
Resumo:
With the growing commercial importance of the Internet and the development of new real-time, connection-oriented services like IP-telephony and electronic commerce resilience is becoming a key issue in the design of TP-based networks. Two emerging technologies, which can accomplish the task of efficient information transfer, are Multiprotocol Label Switching (MPLS) and Differentiated Services. A main benefit of MPLS is the ability to introduce traffic-engineering concepts due to its connection-oriented characteristic. With MPLS it is possible to assign different paths for packets through the network. Differentiated services divides traffic into different classes and treat them differently, especially when there is a shortage of network resources. In this thesis, a framework was proposed to integrate the above two technologies and its performance in providing load balancing and improving QoS was evaluated. Simulation and analysis of this framework demonstrated that the combination of MPLS and Differentiated services is a powerful tool for QoS provisioning in IP networks.