4 resultados para Liquidity proxies
em Digital Commons at Florida International University
Resumo:
Liquidity is an important attribute of an asset that investors would like to take into consideration when making investment decisions. However, the previous empirical evidence whether liquidity is a determinant of stock return is not unanimous. This dissertation provides a very comprehensive study about the role of liquidity in asset pricing using the Fama-French (1993) three-factor and Kraus and Litzenberger (1976) three-moment CAPM as models for risk adjustment. The relationship between liquidity and well-known determinants of stock returns such as size and book-to-market are also investigated. This study examines the liquidity and asset pricing issues for both intertemporal as well as cross-sectional data. ^ The results indicate an existence of a liquidity premium, i.e., less liquid stocks would demand higher rate of return than more liquid stocks. More specifically, a drop of 1 percent in liquidity is associated with a higher rate of return of about 2 to 3 basis points per month. Further investigation reveals that neither the Fama-French three-factor model nor the three-moment CAPM captures the liquidity premium. Finally, the results show that well-known determinants of stock return such as size and book-to-market do not serve as proxy for liquidity. ^ Overall, this dissertation shows that a liquidity premium exists in the stock market and that liquidity is a distinct effect, and is not influenced by the presence of non-market factors, market factors and other stock characteristics.^
Resumo:
We measured the abundance of Cladium jamaicense (Crantz) seeds and three biomarkers in freshwater marsh soils in Shark River Slough (SRS), Everglades National Park (ENP) to determine the degree to which these paleoecological proxies reflect spatial and temporal variation in vegetation. We found that C. jamaicense seeds and the biomarkers Paq, total lignin phenols (TLP) and kaurenes analyzed from surface soils were all significantly correlated with extant aboveground C. jamaicense biomass quantified along a vegetation gradient from a C. jamaicense to a wet prairie/slough (WPS) community. Our results also suggest that these individual proxies may reflect vegetation over different spatial scales: Paq and kaurenes correlated most strongly (R 2 = 0.88 and 0.99, respectively) with vegetation within 1 m of a soil sample, while seeds and TLP reflected vegetation 0–20 m upstream of soil samples. These differences in the spatial scale depicted by the different proxies may be complementary in understanding aspects of historic landscape patterning. Soil profiles of short (25 cm) cores showed that downcore variation in C. jamaicense seeds was highly correlated with two of the three biomarkers (Paq, R 2 = 0.84, p<0.005; TLP, R 2 = 0.97, p<0.0001), and all four of the proxies indicated a recent increase in C. jamaicense biomass at the site. Using a preliminary depth-to-age relationship based on matching charcoal peaks with available ENP fire records (1980-present) specific to our coring site, we found that peak-depths in C. jamaicense seed concentration appeared to correspond to recent minimum water levels (e.g., 1989 and 2001), and low seed abundance corresponded to high water levels (e.g., 1995), consistent with the known autecology of C. jamaicense. In summary, the combination of C. jamaicense seeds and biomarkers may be useful for paleoecological reconstruction of vegetation change and ultimately in guaging the success of ongoing efforts to restore historic hydrologic conditions in the South Florida Everglades.
Resumo:
A plethora of recent literature on asset pricing provides plenty of empirical evidence on the importance of liquidity, governance and adverse selection of equity on pricing of assets together with more traditional factors such as market beta and the Fama-French factors. However, literature has usually stressed that these factors are priced individually. In this dissertation we argue that these factors may be related to each other, hence not only individual but also joint tests of their significance is called for. ^ In the three related essays, we examine the liquidity premium in the context of the finer three-digit SIC industry classification, joint importance of liquidity and governance factors as well as governance and adverse selection. Recent studies by Core, Guay and Rusticus (2006) and Ben-Rephael, Kadan and Wohl (2010) find that governance and liquidity premiums are dwindling in the last few years. One reason could be that liquidity is very unevenly distributed across industries. This could affect the interpretation of prior liquidity studies. Thus, in the first chapter we analyze the relation of industry clustering and liquidity risk following a finer industry classification suggested by Johnson, Moorman and Sorescu (2009). In the second chapter, we examine the dwindling influence of the governance factor if taken simultaneously with liquidity. We argue that this happens since governance characteristics are potentially a proxy for information asymmetry that may be better captured by market liquidity of a company's shares. Hence, we jointly examine both the factors, namely, governance and liquidity - in a series of standard asset pricing tests. Our results reconfirm the importance of governance and liquidity in explaining stock returns thus independently corroborating the findings of Amihud (2002) and Gompers, Ishii and Metrick (2003). Moreover, governance is not subsumed by liquidity. Lastly, we analyze the relation of governance and adverse selection, and again corroborate previous findings of a priced governance factor. Furthermore, we ascertain the importance of microstructure measures in asset pricing by employing Huang and Stoll's (1997) method to extract an adverse selection variable and finding evidence for its explanatory power in four-factor regressions.^
Resumo:
A plethora of recent literature on asset pricing provides plenty of empirical evidence on the importance of liquidity, governance and adverse selection of equity on pricing of assets together with more traditional factors such as market beta and the Fama-French factors. However, literature has usually stressed that these factors are priced individually. In this dissertation we argue that these factors may be related to each other, hence not only individual but also joint tests of their significance is called for. In the three related essays, we examine the liquidity premium in the context of the finer three-digit SIC industry classification, joint importance of liquidity and governance factors as well as governance and adverse selection. Recent studies by Core, Guay and Rusticus (2006) and Ben-Rephael, Kadan and Wohl (2010) find that governance and liquidity premiums are dwindling in the last few years. One reason could be that liquidity is very unevenly distributed across industries. This could affect the interpretation of prior liquidity studies. Thus, in the first chapter we analyze the relation of industry clustering and liquidity risk following a finer industry classification suggested by Johnson, Moorman and Sorescu (2009). In the second chapter, we examine the dwindling influence of the governance factor if taken simultaneously with liquidity. We argue that this happens since governance characteristics are potentially a proxy for information asymmetry that may be better captured by market liquidity of a company’s shares. Hence, we jointly examine both the factors, namely, governance and liquidity – in a series of standard asset pricing tests. Our results reconfirm the importance of governance and liquidity in explaining stock returns thus independently corroborating the findings of Amihud (2002) and Gompers, Ishii and Metrick (2003). Moreover, governance is not subsumed by liquidity. Lastly, we analyze the relation of governance and adverse selection, and again corroborate previous findings of a priced governance factor. Furthermore, we ascertain the importance of microstructure measures in asset pricing by employing Huang and Stoll’s (1997) method to extract an adverse selection variable and finding evidence for its explanatory power in four-factor regressions.