3 resultados para Link variable method

em Digital Commons at Florida International University


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The standard highway assignment model in the Florida Standard Urban Transportation Modeling Structure (FSUTMS) is based on the equilibrium traffic assignment method. This method involves running several iterations of all-or-nothing capacity-restraint assignment with an adjustment of travel time to reflect delays encountered in the associated iteration. The iterative link time adjustment process is accomplished through the Bureau of Public Roads (BPR) volume-delay equation. Since FSUTMS' traffic assignment procedure outputs daily volumes, and the input capacities are given in hourly volumes, it is necessary to convert the hourly capacities to their daily equivalents when computing the volume-to-capacity ratios used in the BPR function. The conversion is accomplished by dividing the hourly capacity by a factor called the peak-to-daily ratio, or referred to as CONFAC in FSUTMS. The ratio is computed as the highest hourly volume of a day divided by the corresponding total daily volume. ^ While several studies have indicated that CONFAC is a decreasing function of the level of congestion, a constant value is used for each facility type in the current version of FSUTMS. This ignores the different congestion level associated with each roadway and is believed to be one of the culprits of traffic assignment errors. Traffic counts data from across the state of Florida were used to calibrate CONFACs as a function of a congestion measure using the weighted least squares method. The calibrated functions were then implemented in FSUTMS through a procedure that takes advantage of the iterative nature of FSUTMS' equilibrium assignment method. ^ The assignment results based on constant and variable CONFACs were then compared against the ground counts for three selected networks. It was found that the accuracy from the two assignments was not significantly different, that the hypothesized improvement in assignment results from the variable CONFAC model was not empirically evident. It was recognized that many other factors beyond the scope and control of this study could contribute to this finding. It was recommended that further studies focus on the use of the variable CONFAC model with recalibrated parameters for the BPR function and/or with other forms of volume-delay functions. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Annual average daily traffic (AADT) is important information for many transportation planning, design, operation, and maintenance activities, as well as for the allocation of highway funds. Many studies have attempted AADT estimation using factor approach, regression analysis, time series, and artificial neural networks. However, these methods are unable to account for spatially variable influence of independent variables on the dependent variable even though it is well known that to many transportation problems, including AADT estimation, spatial context is important. ^ In this study, applications of geographically weighted regression (GWR) methods to estimating AADT were investigated. The GWR based methods considered the influence of correlations among the variables over space and the spatially non-stationarity of the variables. A GWR model allows different relationships between the dependent and independent variables to exist at different points in space. In other words, model parameters vary from location to location and the locally linear regression parameters at a point are affected more by observations near that point than observations further away. ^ The study area was Broward County, Florida. Broward County lies on the Atlantic coast between Palm Beach and Miami-Dade counties. In this study, a total of 67 variables were considered as potential AADT predictors, and six variables (lanes, speed, regional accessibility, direct access, density of roadway length, and density of seasonal household) were selected to develop the models. ^ To investigate the predictive powers of various AADT predictors over the space, the statistics including local r-square, local parameter estimates, and local errors were examined and mapped. The local variations in relationships among parameters were investigated, measured, and mapped to assess the usefulness of GWR methods. ^ The results indicated that the GWR models were able to better explain the variation in the data and to predict AADT with smaller errors than the ordinary linear regression models for the same dataset. Additionally, GWR was able to model the spatial non-stationarity in the data, i.e., the spatially varying relationship between AADT and predictors, which cannot be modeled in ordinary linear regression. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Groundwater systems of different densities are often mathematically modeled to understand and predict environmental behavior such as seawater intrusion or submarine groundwater discharge. Additional data collection may be justified if it will cost-effectively aid in reducing the uncertainty of a model's prediction. The collection of salinity, as well as, temperature data could aid in reducing predictive uncertainty in a variable-density model. However, before numerical models can be created, rigorous testing of the modeling code needs to be completed. This research documents the benchmark testing of a new modeling code, SEAWAT Version 4. The benchmark problems include various combinations of density-dependent flow resulting from variations in concentration and temperature. The verified code, SEAWAT, was then applied to two different hydrological analyses to explore the capacity of a variable-density model to guide data collection. ^ The first analysis tested a linear method to guide data collection by quantifying the contribution of different data types and locations toward reducing predictive uncertainty in a nonlinear variable-density flow and transport model. The relative contributions of temperature and concentration measurements, at different locations within a simulated carbonate platform, for predicting movement of the saltwater interface were assessed. Results from the method showed that concentration data had greater worth than temperature data in reducing predictive uncertainty in this case. Results also indicated that a linear method could be used to quantify data worth in a nonlinear model. ^ The second hydrological analysis utilized a model to identify the transient response of the salinity, temperature, age, and amount of submarine groundwater discharge to changes in tidal ocean stage, seasonal temperature variations, and different types of geology. The model was compared to multiple kinds of data to (1) calibrate and verify the model, and (2) explore the potential for the model to be used to guide the collection of data using techniques such as electromagnetic resistivity, thermal imagery, and seepage meters. Results indicated that the model can be used to give insight to submarine groundwater discharge and be used to guide data collection. ^