11 resultados para Linear response
em Digital Commons at Florida International University
Resumo:
Advancements in the micro-and nano-scale fabrication techniques have opened up new avenues for the development of portable, scalable and easier-to-use biosensors. Over the last few years, electrodes made of carbon have been widely used as sensing units in biosensors due to their attractive physiochemical properties. The aim of this research is to investigate different strategies to develop functionalized high surface carbon micro/nano-structures for electrochemical and biosensing devices. High aspect ratio three-dimensional carbon microarrays were fabricated via carbon microelectromechanical systems (C-MEMS) technique, which is based on pyrolyzing pre-patterned organic photoresist polymers. To further increase the surface area of the carbon microstructures, surface porosity was introduced by two strategies, i.e. (i) using F127 as porogen and (ii) oxygen reactive ion etch (RIE) treatment. Electrochemical characterization showed that porous carbon thin film electrodes prepared by using F127 as porogen had an effective surface area (Aeff 185%) compared to the conventional carbon electrode. To achieve enhanced electrochemical sensitivity for C-MEMS based functional devices, graphene was conformally coated onto high aspect ratio three-dimensional (3D) carbon micropillar arrays using electrostatic spray deposition (ESD) technique. The amperometric response of graphene/carbon micropillar electrode arrays exhibited higher electrochemical activity, improved charge transfer and a linear response towards H2O2 detection between 250&mgr;M to 5.5mM. Furthermore, carbon structures with dimensions from 50 nano-to micrometer level have been fabricated by pyrolyzing photo-nanoimprint lithography patterned organic resist polymer. Microstructure, elemental composition and resistivity characterization of the carbon nanostructures produced by this process were very similar to conventional photoresist derived carbon. Surface functionalization of the carbon nanostructures was performed using direct amination technique. Considering the need for requisite functional groups to covalently attach bioreceptors on the carbon surface for biomolecule detection, different oxidation techniques were compared to study the types of carbon-oxygen groups formed on the surface and their percentages with respect to different oxidation pretreatment times. Finally, a label-free detection strategy using signaling aptamer/protein binding complex for platelet-derived growth factor oncoprotein detection on functionalized three-dimensional carbon microarrays platform was demonstrated. The sensor showed near linear relationship between the relative fluorescence difference and protein concentration even in the sub-nanomolar range with an excellent detection limit of 5 pmol.
Resumo:
The study of transport processes in low-dimensional semiconductors requires a rigorous quantum mechanical treatment. However, a full-fledged quantum transport theory of electrons (or holes) in semiconductors of small scale, applicable in the presence of external fields of arbitrary strength, is still not available. In the literature, different approaches have been proposed, including: (a) the semiclassical Boltzmann equation, (b) perturbation theory based on Keldysh's Green functions, and (c) the Quantum Boltzmann Equation (QBE), previously derived by Van Vliet and coworkers, applicable in the realm of Kubo's Linear Response Theory (LRT). ^ In the present work, we follow the method originally proposed by Van Wet in LRT. The Hamiltonian in this approach is of the form: H = H 0(E, B) + λV, where H0 contains the externally applied fields, and λV includes many-body interactions. This Hamiltonian differs from the LRT Hamiltonian, H = H0 - AF(t) + λV, which contains the external field in the field-response part, -AF(t). For the nonlinear problem, the eigenfunctions of the system Hamiltonian, H0(E, B), include the external fields without any limitation on strength. ^ In Part A of this dissertation, both the diagonal and nondiagonal Master equations are obtained after applying projection operators to the von Neumann equation for the density operator in the interaction picture, and taking the Van Hove limit, (λ → 0, t → ∞, so that (λ2 t)n remains finite). Similarly, the many-body current operator J is obtained from the Heisenberg equation of motion. ^ In Part B, the Quantum Boltzmann Equation is obtained in the occupation-number representation for an electron gas, interacting with phonons or impurities. On the one-body level, the current operator obtained in Part A leads to the Generalized Calecki current for electric and magnetic fields of arbitrary strength. Furthermore, in this part, the LRT results for the current and conductance are recovered in the limit of small electric fields. ^ In Part C, we apply the above results to the study of both linear and nonlinear longitudinal magneto-conductance in quasi one-dimensional quantum wires (1D QW). We have thus been able to quantitatively explain the experimental results, recently published by C. Brick, et al., on these novel frontier-type devices. ^
Resumo:
The study of transport processes in low-dimensional semiconductors requires a rigorous quantum mechanical treatment. However, a full-fledged quantum transport theory of electrons (or holes) in semiconductors of small scale, applicable in the presence of external fields of arbitrary strength, is still not available. In the literature, different approaches have been proposed, including: (a) the semiclassical Boltzmann equation, (b) perturbation theory based on Keldysh's Green functions, and (c) the Quantum Boltzmann Equation (QBE), previously derived by Van Vliet and coworkers, applicable in the realm of Kubo's Linear Response Theory (LRT). In the present work, we follow the method originally proposed by Van Vliet in LRT. The Hamiltonian in this approach is of the form: H = H°(E, B) + λV, where H0 contains the externally applied fields, and λV includes many-body interactions. This Hamiltonian differs from the LRT Hamiltonian, H = H° - AF(t) + λV, which contains the external field in the field-response part, -AF(t). For the nonlinear problem, the eigenfunctions of the system Hamiltonian, H°(E, B) , include the external fields without any limitation on strength. In Part A of this dissertation, both the diagonal and nondiagonal Master equations are obtained after applying projection operators to the von Neumann equation for the density operator in the interaction picture, and taking the Van Hove limit, (λ → 0 , t → ∞ , so that (λ2 t)n remains finite). Similarly, the many-body current operator J is obtained from the Heisenberg equation of motion. In Part B, the Quantum Boltzmann Equation is obtained in the occupation-number representation for an electron gas, interacting with phonons or impurities. On the one-body level, the current operator obtained in Part A leads to the Generalized Calecki current for electric and magnetic fields of arbitrary strength. Furthermore, in this part, the LRT results for the current and conductance are recovered in the limit of small electric fields. In Part C, we apply the above results to the study of both linear and nonlinear longitudinal magneto-conductance in quasi one-dimensional quantum wires (1D QW). We have thus been able to quantitatively explain the experimental results, recently published by C. Brick, et al., on these novel frontier-type devices.
Resumo:
Advancements in the micro-and nano-scale fabrication techniques have opened up new avenues for the development of portable, scalable and easier-to-use biosensors. Over the last few years, electrodes made of carbon have been widely used as sensing units in biosensors due to their attractive physiochemical properties. The aim of this research is to investigate different strategies to develop functionalized high surface carbon micro/nano-structures for electrochemical and biosensing devices. High aspect ratio three-dimensional carbon microarrays were fabricated via carbon microelectromechanical systems (C-MEMS) technique, which is based on pyrolyzing pre-patterned organic photoresist polymers. To further increase the surface area of the carbon microstructures, surface porosity was introduced by two strategies, i.e. (i) using F127 as porogen and (ii) oxygen reactive ion etch (RIE) treatment. Electrochemical characterization showed that porous carbon thin film electrodes prepared by using F127 as porogen had an effective surface area (Aeff 185%) compared to the conventional carbon electrode. To achieve enhanced electrochemical sensitivity for C-MEMS based functional devices, graphene was conformally coated onto high aspect ratio three-dimensional (3D) carbon micropillar arrays using electrostatic spray deposition (ESD) technique. The amperometric response of graphene/carbon micropillar electrode arrays exhibited higher electrochemical activity, improved charge transfer and a linear response towards H2O2 detection between 250μM to 5.5mM. Furthermore, carbon structures with dimensions from 50 nano-to micrometer level have been fabricated by pyrolyzing photo-nanoimprint lithography patterned organic resist polymer. Microstructure, elemental composition and resistivity characterization of the carbon nanostructures produced by this process were very similar to conventional photoresist derived carbon. Surface functionalization of the carbon nanostructures was performed using direct amination technique. Considering the need for requisite functional groups to covalently attach bioreceptors on the carbon surface for biomolecule detection, different oxidation techniques were compared to study the types of carbon–oxygen groups formed on the surface and their percentages with respect to different oxidation pretreatment times. Finally, a label-free detection strategy using signaling aptamer/protein binding complex for platelet-derived growth factor oncoprotein detection on functionalized three-dimensional carbon microarrays platform was demonstrated. The sensor showed near linear relationship between the relative fluorescence difference and protein concentration even in the sub-nanomolar range with an excellent detection limit of 5 pmol.
Resumo:
This study is to theoretically investigate shockwave and microbubble formation due to laser absorption by microparticles and nanoparticles. The initial motivation for this research was to understand the underlying physical mechanisms responsible for laser damage to the retina, as well as the predict threshold levels for damage for laser pulses with of progressively shorter durations. The strongest absorbers in the retina are micron size melanosomes, and their absorption of laser light causes them to accrue very high energy density. I theoretically investigate how this absorbed energy is transferred to the surrounding medium. For a wide range of conditions I calculate shockwave generation and bubble growth as a function of the three parameters; fluence, pulse duration and pulse shape. In order to develop a rigorous physical treatment, the governing equations for the behavior of an absorber and for the surrounding medium are derived. Shockwave theory is investigated and the conclusion is that a shock pressure explanation is likely to be the underlying physical cause of retinal damage at threshold fluences for sub-nanosecond pulses. The same effects are also expected for non-biological micro and nano absorbers. ^
Resumo:
Numerical optimization is a technique where a computer is used to explore design parameter combinations to find extremes in performance factors. In multi-objective optimization several performance factors can be optimized simultaneously. The solution to multi-objective optimization problems is not a single design, but a family of optimized designs referred to as the Pareto frontier. The Pareto frontier is a trade-off curve in the objective function space composed of solutions where performance in one objective function is traded for performance in others. A Multi-Objective Hybridized Optimizer (MOHO) was created for the purpose of solving multi-objective optimization problems by utilizing a set of constituent optimization algorithms. MOHO tracks the progress of the Pareto frontier approximation development and automatically switches amongst those constituent evolutionary optimization algorithms to speed the formation of an accurate Pareto frontier approximation. Aerodynamic shape optimization is one of the oldest applications of numerical optimization. MOHO was used to perform shape optimization on a 0.5-inch ballistic penetrator traveling at Mach number 2.5. Two objectives were simultaneously optimized: minimize aerodynamic drag and maximize penetrator volume. This problem was solved twice. The first time the problem was solved by using Modified Newton Impact Theory (MNIT) to determine the pressure drag on the penetrator. In the second solution, a Parabolized Navier-Stokes (PNS) solver that includes viscosity was used to evaluate the drag on the penetrator. The studies show the difference in the optimized penetrator shapes when viscosity is absent and present in the optimization. In modern optimization problems, objective function evaluations may require many hours on a computer cluster to perform these types of analysis. One solution is to create a response surface that models the behavior of the objective function. Once enough data about the behavior of the objective function has been collected, a response surface can be used to represent the actual objective function in the optimization process. The Hybrid Self-Organizing Response Surface Method (HYBSORSM) algorithm was developed and used to make response surfaces of objective functions. HYBSORSM was evaluated using a suite of 295 non-linear functions. These functions involve from 2 to 100 variables demonstrating robustness and accuracy of HYBSORSM.
Resumo:
Natural and man-made disasters have gained attention at all levels of policy-making in recent years. Emergency management tasks are inherently complex and unpredictable, and often require coordination among multiple organizations across different levels and locations. Effectively managing various knowledge areas and the organizations involved has become a critical emergency management success factor. However, there is a general lack of understanding about how to describe and assess the complex nature of emergency management tasks and how knowledge integration can help managers improve emergency management task performance. ^ The purpose of this exploratory research was first, to understand how emergency management operations are impacted by tasks that are complex and inter-organizational and second, to investigate how knowledge integration as a particular knowledge management strategy can improve the efficiency and effectiveness of the emergency tasks. Three types of specific knowledge were considered: context-specific, technology-specific, and context-and-technology-specific. ^ The research setting was the Miami-Dade Emergency Operations Center (EOC) and the study was based on the survey responses from the participants in past EOC activations related to their emergency tasks and knowledge areas. The data included task attributes related to complexity, knowledge area, knowledge integration, specificity of knowledge, and task performance. The data was analyzed using multiple linear regressions and path analyses, to (1) examine the relationships between task complexity, knowledge integration, and performance, (2) the moderating effects of each type of specific knowledge on the relationship between task complexity and performance, and (3) the mediating role of knowledge integration. ^ As per theory-based propositions, the results indicated that overall component complexity and interactive complexity tend to have a negative effect on task performance. But surprisingly, procedural rigidity tended to have a positive effect on performance in emergency management tasks. Also as per our expectation, knowledge integration had a positive relationship with task performance. Interestingly, the moderating effects of each type of specific knowledge on the relationship between task complexity and performance were varied and the extent of mediation of knowledge integration depended on the dimension of task complexity. ^
Resumo:
High-stakes testing and accountability have infiltrated the education system in the United States; the top priority for all teachers must be student progress on standardized tests. This has resulted in the predominance of reading for test-taking, (efferent reading), in the English, language arts, and reading classrooms. Authentic uses of print activities, like aesthetic reading, that encourage students to engage individually with a text, have been pushed aside. ^ During a 3-week time period, regular level, English 3/American literature students in a Title I magnet high school, participated in this quasi-experimental study (N = 62). It measured the effects of an intervention of reading American literature texts aesthetically and writing aesthetically-evoked reader responses on students' self-efficacy beliefs regarding their comprehension of American literature. One trained teacher and the researcher participated in the study: student participants were pre- and post- tested using the Confidence in Reading American Literature Survey which examined their self-efficacy beliefs regarding their comprehension of American literature. Several statistical analyses were performed. The results of the linear regression analyses partially supported a positive relationship between aesthetically-evoked reader responses and students' self-efficacy beliefs regarding their comprehension of American literature. Additionally, the results of the 2 (sex) x 2 (treatment) ANCOVAs conducted to test group differences in self-efficacy beliefs regarding the comprehension of American literature between treatment and control groups indicated a main effect for treatment (but not sex; nor was there a significant sex x treatment interaction), suggesting the treatment was partially effective in increasing students' self-efficacy beliefs. Seven of the twelve ANCOVAs indicated a statistically significant increase in the treatment group's adjusted group mean self-efficacy belief scores as a result of being exposed to the intervention. In six of these seven analyses, increases in self-efficacy beliefs occurred in tasks that required three or more higher-order levels of thinking/learning. The results are discussed in terms of theoretical, empirical and practical significance. Future research is recommended to extend the intervention beyond the narrow confines of a Title I magnet school to settings where the intervention could be tested longitudinally, e. g., honors and gifted students, elementary and middle schools.^
Resumo:
Many U.S. students do not perform well on mathematics assessments with respect to algebra topics such as linear functions, a building-block for other functions. Poor achievement of U.S. middle school students in this topic is a problem. U.S. eighth graders have had average mathematics scores on international comparison tests such as Third International Mathematics Science Study, later known as Trends in Mathematics and Science Study, (TIMSS)-1995, -99, -03, while Singapore students have had highest average scores. U.S. eighth grade average mathematics scores improved on TIMMS-2007 and held steady onTIMMS-2011. Results from national assessments, PISA 2009 and 2012 and National Assessment of Educational Progress of 2007, 2009, and 2013, showed a lack of proficiency in algebra. Results of curriculum studies involving nations in TIMSS suggest that elementary textbooks in high-scoring countries were different than elementary textbooks and middle grades texts were different with respect to general features in the U.S. The purpose of this study was to compare treatments of linear functions in Singapore and U.S. middle grades mathematics textbooks. Results revealed features currently in textbooks. Findings should be valuable to constituencies who wish to improve U.S. mathematics achievement. Portions of eight Singapore and nine U.S. middle school student texts pertaining to linear functions were compared with respect to 22 features in three categories: (a) background features, (b) general features of problems, and (c) specific characterizations of problem practices, problem-solving competency types, and transfer of representation. Features were coded using a codebook developed by the researcher. Tallies and percentages were reported. Welch's t-tests and chi-square tests were used, respectively, to determine whether texts differed significantly for the features and if codes were independent of country. U.S. and Singapore textbooks differed in page appearance and number of pages, problems, and images. Texts were similar in problem appearance. Differences in problems related to assessment of conceptual learning. U.S. texts contained more problems requiring (a) use of definitions, (b) single computation, (c) interpreting, and (d) multiple responses. These differences may stem from cultural differences seen in attitudes toward education. Future studies should focus on density of page, spiral approach, and multiple response problems.
Resumo:
Natural and man-made disasters have gained attention at all levels of policy-making in recent years. Emergency management tasks are inherently complex and unpredictable, and often require coordination among multiple organizations across different levels and locations. Effectively managing various knowledge areas and the organizations involved has become a critical emergency management success factor. However, there is a general lack of understanding about how to describe and assess the complex nature of emergency management tasks and how knowledge integration can help managers improve emergency management task performance. The purpose of this exploratory research was first, to understand how emergency management operations are impacted by tasks that are complex and inter-organizational and second, to investigate how knowledge integration as a particular knowledge management strategy can improve the efficiency and effectiveness of the emergency tasks. Three types of specific knowledge were considered: context-specific, technology-specific, and context-and-technology-specific. The research setting was the Miami-Dade Emergency Operations Center (EOC) and the study was based on the survey responses from the participants in past EOC activations related to their emergency tasks and knowledge areas. The data included task attributes related to complexity, knowledge area, knowledge integration, specificity of knowledge, and task performance. The data was analyzed using multiple linear regressions and path analyses, to (1) examine the relationships between task complexity, knowledge integration, and performance, (2) the moderating effects of each type of specific knowledge on the relationship between task complexity and performance, and (3) the mediating role of knowledge integration. As per theory-based propositions, the results indicated that overall component complexity and interactive complexity tend to have a negative effect on task performance. But surprisingly, procedural rigidity tended to have a positive effect on performance in emergency management tasks. Also as per our expectation, knowledge integration had a positive relationship with task performance. Interestingly, the moderating effects of each type of specific knowledge on the relationship between task complexity and performance were varied and the extent of mediation of knowledge integration depended on the dimension of task complexity.
Resumo:
High-stakes testing and accountability have infiltrated the education system in the United States; the top priority for all teachers must be student progress on standardized tests. This has resulted in the predominance of reading for test-taking, (efferent reading), in the English, language arts, and reading classrooms. Authentic uses of print activities, like aesthetic reading, that encourage students to engage individually with a text, have been pushed aside. During a 3-week time period, regular level, English 3/American literature students in a Title I magnet high school, participated in this quasi-experimental study (N = 62). It measured the effects of an intervention of reading American literature texts aesthetically and writing aesthetically-evoked reader responses on students’ self-efficacy beliefs regarding their comprehension of American literature. One trained teacher and the researcher participated in the study: student participants were pre- and post- tested using the Confidence in Reading American Literature Survey which examined their self-efficacy beliefs regarding their comprehension of American literature. Several statistical analyses were performed. The results of the linear regression analyses partially supported a positive relationship between aesthetically-evoked reader responses and students’ self-efficacy beliefs regarding their comprehension of American literature. Additionally, the results of the 2 (sex) x 2 (treatment) ANCOVAs conducted to test group differences in self-efficacy beliefs regarding the comprehension of American literature between treatment and control groups indicated a main effect for treatment (but not sex; nor was there a significant sex x treatment interaction), suggesting the treatment was partially effective in increasing students’ self-efficacy beliefs. Seven of the twelve ANCOVAs indicated a statistically significant increase in the treatment group’s adjusted group mean self-efficacy belief scores as a result of being exposed to the intervention. In six of these seven analyses, increases in self-efficacy beliefs occurred in tasks that required three or more higher-order levels of thinking/learning. The results are discussed in terms of theoretical, empirical and practical significance. Future research is recommended to extend the intervention beyond the narrow confines of a Title I magnet school to settings where the intervention could be tested longitudinally, e. g., honors and gifted students, elementary and middle schools.