3 resultados para Linear programming models
em Digital Commons at Florida International University
Resumo:
Highways are generally designed to serve a mixed traffic flow that consists of passenger cars, trucks, buses, recreational vehicles, etc. The fact that the impacts of these different vehicle types are not uniform creates problems in highway operations and safety. A common approach to reducing the impacts of truck traffic on freeways has been to restrict trucks to certain lane(s) to minimize the interaction between trucks and other vehicles and to compensate for their differences in operational characteristics. ^ The performance of different truck lane restriction alternatives differs under different traffic and geometric conditions. Thus, a good estimate of the operational performance of different truck lane restriction alternatives under prevailing conditions is needed to help make informed decisions on truck lane restriction alternatives. This study develops operational performance models that can be applied to help identify the most operationally efficient truck lane restriction alternative on a freeway under prevailing conditions. The operational performance measures examined in this study include average speed, throughput, speed difference, and lane changes. Prevailing conditions include number of lanes, interchange density, free-flow speeds, volumes, truck percentages, and ramp volumes. ^ Recognizing the difficulty of collecting sufficient data for an empirical modeling procedure that involves a high number of variables, the simulation approach was used to estimate the performance values for various truck lane restriction alternatives under various scenarios. Both the CORSIM and VISSIM simulation models were examined for their ability to model truck lane restrictions. Due to a major problem found in the CORSIM model for truck lane modeling, the VISSIM model was adopted as the simulator for this study. ^ The VISSIM model was calibrated mainly to replicate the capacity given in the 2000 Highway Capacity Manual (HCM) for various free-flow speeds under the ideal basic freeway section conditions. Non-linear regression models for average speed, throughput, average number of lane changes, and speed difference between the lane groups were developed. Based on the performance models developed, a simple decision procedure was recommended to select the desired truck lane restriction alternative for prevailing conditions. ^
Resumo:
Bus stops are key links in the journeys of transit patrons with disabilities. Inaccessible bus stops prevent people with disabilities from using fixed-route bus services, thus limiting their mobility. The Americans with Disabilities Act (ADA) of 1990 prescribes the minimum requirements for bus stop accessibility by riders with disabilities. Due to limited budgets, transit agencies can only select a limited number of bus stop locations for ADA improvements annually. These locations should preferably be selected such that they maximize the overall benefits to patrons with disabilities. In addition, transit agencies may also choose to implement the universal design paradigm, which involves higher design standards than current ADA requirements and can provide amenities that are useful for all riders, like shelters and lighting. Many factors can affect the decision to improve a bus stop, including rider-based aspects like the number of riders with disabilities, total ridership, customer complaints, accidents, deployment costs, as well as locational aspects like the location of employment centers, schools, shopping areas, and so on. These interlacing factors make it difficult to identify optimum improvement locations without the aid of an optimization model. This dissertation proposes two integer programming models to help identify a priority list of bus stops for accessibility improvements. The first is a binary integer programming model designed to identify bus stops that need improvements to meet the minimum ADA requirements. The second involves a multi-objective nonlinear mixed integer programming model that attempts to achieve an optimal compromise among the two accessibility design standards. Geographic Information System (GIS) techniques were used extensively to both prepare the model input and examine the model output. An analytic hierarchy process (AHP) was applied to combine all of the factors affecting the benefits to patrons with disabilities. An extensive sensitivity analysis was performed to assess the reasonableness of the model outputs in response to changes in model constraints. Based on a case study using data from Broward County Transit (BCT) in Florida, the models were found to produce a list of bus stops that upon close examination were determined to be highly logical. Compared to traditional approaches using staff experience, requests from elected officials, customer complaints, etc., these optimization models offer a more objective and efficient platform on which to make bus stop improvement suggestions.
Resumo:
The purpose of this research study was to investigate if the determination of school readiness as it was evaluated by Broward County kindergarten teachers on the Florida's Expectations of School Readiness checklist can be attributed to the effects of gender, chronological age on school entry, racial or ethnic background, attending public preschool, native language other than English, or socioeconomic status.^ This is a descriptive study in which the number of expectations passed or failed for each of the identifier categories was compared. The Chi-squared distribution was used to evaluate the null hypothesis that "chronological age at entry to school, gender, race or ethnicity, native language other than English, public preschool experience, and socioeconomic status have no effect on the determination of readiness for school". Results were confirmed using t-tests, ANOVA, and linear regression models. The cohort of 1555 Broward County students in the study were evaluated using the Florida's Expectations for School Readiness checklist and were determined not ready for school during the initial data collection year 1996-1997.^ The determination of school readiness was significantly dependent on the gender, and racial or ethnic background of the students in the cohort. The socioeconomic status and native language other than English designations were significant for students only in the areas of preacademic, academic and literacy development. Chronological age on entry to school or attendance in public preschool prior to entry in kindergarten for the cohort was not significant in the determination of readiness for school.^ Given the fact that this study followed only students that were determined not ready for school, it is recommended that a second cohort of both "ready" and "not ready" students be studied. ^