2 resultados para Linear forms in logarithms

em Digital Commons at Florida International University


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many U.S. students do not perform well on mathematics assessments with respect to algebra topics such as linear functions, a building-block for other functions. Poor achievement of U.S. middle school students in this topic is a problem. U.S. eighth graders have had average mathematics scores on international comparison tests such as Third International Mathematics Science Study, later known as Trends in Mathematics and Science Study, (TIMSS)-1995, -99, -03, while Singapore students have had highest average scores. U.S. eighth grade average mathematics scores improved on TIMMS-2007 and held steady onTIMMS-2011. Results from national assessments, PISA 2009 and 2012 and National Assessment of Educational Progress of 2007, 2009, and 2013, showed a lack of proficiency in algebra. Results of curriculum studies involving nations in TIMSS suggest that elementary textbooks in high-scoring countries were different than elementary textbooks and middle grades texts were different with respect to general features in the U.S. The purpose of this study was to compare treatments of linear functions in Singapore and U.S. middle grades mathematics textbooks. Results revealed features currently in textbooks. Findings should be valuable to constituencies who wish to improve U.S. mathematics achievement. Portions of eight Singapore and nine U.S. middle school student texts pertaining to linear functions were compared with respect to 22 features in three categories: (a) background features, (b) general features of problems, and (c) specific characterizations of problem practices, problem-solving competency types, and transfer of representation. Features were coded using a codebook developed by the researcher. Tallies and percentages were reported. Welch's t-tests and chi-square tests were used, respectively, to determine whether texts differed significantly for the features and if codes were independent of country. U.S. and Singapore textbooks differed in page appearance and number of pages, problems, and images. Texts were similar in problem appearance. Differences in problems related to assessment of conceptual learning. U.S. texts contained more problems requiring (a) use of definitions, (b) single computation, (c) interpreting, and (d) multiple responses. These differences may stem from cultural differences seen in attitudes toward education. Future studies should focus on density of page, spiral approach, and multiple response problems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Modern geographical databases, which are at the core of geographic information systems (GIS), store a rich set of aspatial attributes in addition to geographic data. Typically, aspatial information comes in textual and numeric format. Retrieving information constrained on spatial and aspatial data from geodatabases provides GIS users the ability to perform more interesting spatial analyses, and for applications to support composite location-aware searches; for example, in a real estate database: “Find the nearest homes for sale to my current location that have backyard and whose prices are between $50,000 and $80,000”. Efficient processing of such queries require combined indexing strategies of multiple types of data. Existing spatial query engines commonly apply a two-filter approach (spatial filter followed by nonspatial filter, or viceversa), which can incur large performance overheads. On the other hand, more recently, the amount of geolocation data has grown rapidly in databases due in part to advances in geolocation technologies (e.g., GPS-enabled smartphones) that allow users to associate location data to objects or events. The latter poses potential data ingestion challenges of large data volumes for practical GIS databases. In this dissertation, we first show how indexing spatial data with R-trees (a typical data pre-processing task) can be scaled in MapReduce—a widely-adopted parallel programming model for data intensive problems. The evaluation of our algorithms in a Hadoop cluster showed close to linear scalability in building R-tree indexes. Subsequently, we develop efficient algorithms for processing spatial queries with aspatial conditions. Novel techniques for simultaneously indexing spatial with textual and numeric data are developed to that end. Experimental evaluations with real-world, large spatial datasets measured query response times within the sub-second range for most cases, and up to a few seconds for a small number of cases, which is reasonable for interactive applications. Overall, the previous results show that the MapReduce parallel model is suitable for indexing tasks in spatial databases, and the adequate combination of spatial and aspatial attribute indexes can attain acceptable response times for interactive spatial queries with constraints on aspatial data.