6 resultados para Limit State Functions

em Digital Commons at Florida International University


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Small errors proved catastrophic. Our purpose to remark that a very small cause which escapes our notice determined a considerable effect that we cannot fail to see, and then we say that the effect is due to chance. Small differences in the initial conditions produce very great ones in the final phenomena. A small error in the former will produce an enormous error in the latter. When dealing with any kind of electrical device specification, it is important to note that there exists a pair of test conditions that define a test: the forcing function and the limit. Forcing functions define the external operating constraints placed upon the device tested. The actual test defines how well the device responds to these constraints. Forcing inputs to threshold for example, represents the most difficult testing because this put those inputs as close as possible to the actual switching critical points and guarantees that the device will meet the Input-Output specifications. ^ Prediction becomes impossible by classical analytical analysis bounded by Newton and Euclides. We have found that non linear dynamics characteristics is the natural state of being in all circuits and devices. Opportunities exist for effective error detection in a nonlinear dynamics and chaos environment. ^ Nowadays there are a set of linear limits established around every aspect of a digital or analog circuits out of which devices are consider bad after failing the test. Deterministic chaos circuit is a fact not a possibility as it has been revived by our Ph.D. research. In practice for linear standard informational methodologies, this chaotic data product is usually undesirable and we are educated to be interested in obtaining a more regular stream of output data. ^ This Ph.D. research explored the possibilities of taking the foundation of a very well known simulation and modeling methodology, introducing nonlinear dynamics and chaos precepts, to produce a new error detector instrument able to put together streams of data scattered in space and time. Therefore, mastering deterministic chaos and changing the bad reputation of chaotic data as a potential risk for practical system status determination. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Governmental accountability is the requirement of government entities to be accountable to the citizenry in order to justify the raising and expenditure of public resources. The concept of service efforts and accomplishments measurement for government programs was introduced by the Governmental Accounting Standards Board (GASB) in Service Efforts and Accomplishments Reporting: Its Time Has Come (1990). This research tested the feasibility of implementing the concept for the Federal-aid highway construction program and identified factors affecting implementation with a case study of the District of Columbia. Changes in condition and performance ratings for specific highway segments in 15 projects, before and after construction expenditures, were evaluated using data provided by the Federal Highway Administration. The results of the evaluation indicated difficulty in drawing conclusions on the state program performance, as a whole. The state program reflects problems within the Federally administered program that severely limit implementation of outcome-oriented performance measurement. Major problems identified with data acquisition are: data reliability, availability, compatibility and consistency among states. Other significant factors affecting implementation are institutional barriers and political barriers. Institutional issues in the Federal Highway Administration include the lack of integration of the fiscal project specific database with the Highway Performance Monitoring System database. The Federal Highway Administration has the ability to resolve both of the data problems, however interviews with key Federal informants indicate this will not occur without external directives and changes to the Federal “stewardship” approach to program administration. ^ The findings indicate many issues must be resolved for successful implementation of outcome-oriented performance measures in the Federal-aid construction program. The issues are organizational and political in nature, however in the current environment resolution is possible. Additional research is desirable and would be useful in overcoming the obstacles to successful implementation. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Crash reduction factors (CRFs) are used to estimate the potential number of traffic crashes expected to be prevented from investment in safety improvement projects. The method used to develop CRFs in Florida has been based on the commonly used before-and-after approach. This approach suffers from a widely recognized problem known as regression-to-the-mean (RTM). The Empirical Bayes (EB) method has been introduced as a means to addressing the RTM problem. This method requires the information from both the treatment and reference sites in order to predict the expected number of crashes had the safety improvement projects at the treatment sites not been implemented. The information from the reference sites is estimated from a safety performance function (SPF), which is a mathematical relationship that links crashes to traffic exposure. The objective of this dissertation was to develop the SPFs for different functional classes of the Florida State Highway System. Crash data from years 2001 through 2003 along with traffic and geometric data were used in the SPF model development. SPFs for both rural and urban roadway categories were developed. The modeling data used were based on one-mile segments that contain homogeneous traffic and geometric conditions within each segment. Segments involving intersections were excluded. The scatter plots of data show that the relationships between crashes and traffic exposure are nonlinear, that crashes increase with traffic exposure in an increasing rate. Four regression models, namely, Poisson (PRM), Negative Binomial (NBRM), zero-inflated Poisson (ZIP), and zero-inflated Negative Binomial (ZINB), were fitted to the one-mile segment records for individual roadway categories. The best model was selected for each category based on a combination of the Likelihood Ratio test, the Vuong statistical test, and the Akaike's Information Criterion (AIC). The NBRM model was found to be appropriate for only one category and the ZINB model was found to be more appropriate for six other categories. The overall results show that the Negative Binomial distribution model generally provides a better fit for the data than the Poisson distribution model. In addition, the ZINB model was found to give the best fit when the count data exhibit excess zeros and over-dispersion for most of the roadway categories. While model validation shows that most data points fall within the 95% prediction intervals of the models developed, the Pearson goodness-of-fit measure does not show statistical significance. This is expected as traffic volume is only one of the many factors contributing to the overall crash experience, and that the SPFs are to be applied in conjunction with Accident Modification Factors (AMFs) to further account for the safety impacts of major geometric features before arriving at the final crash prediction. However, with improved traffic and crash data quality, the crash prediction power of SPF models may be further improved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In response to a crime epidemic afflicting Latin America since the early 1990s, several countries in the region have resorted to using heavy-force police or military units to physically retake territories de facto controlled by non-State criminal or insurgent groups. After a period of territory control, the heavy forces hand law enforcement functions in the retaken territories to regular police officers, with the hope that the territories and their populations will remain under the control of the state. To a varying degree, intensity, and consistency, Brazil, Colombia, Mexico, and Jamaica have adopted such policies since the mid-1990s. During such operations, governments need to pursue two interrelated objectives: to better establish the state’s physical presence and to realign the allegiance of the population in those areas toward the state and away from the non-State criminal entities. From the perspective of law enforcement, such operations entail several critical decisions and junctions, such as: Whether or not to announce the force insertion in advance. The decision trades off the element of surprise and the ability to capture key leaders of the criminal organizations against the ability to minimize civilian casualties and force levels. The latter, however, may allow criminals to go to ground and escape capture. Governments thus must decide whether they merely seek to displace criminal groups to other areas or maximize their decapitation capacity. Intelligence flows rarely come from the population. Often, rival criminal groups are the best source of intelligence. However, cooperation between the State and such groups that goes beyond using vetted intelligence provided by the groups, such as a State tolerance for militias, compromises the rule-of-law integrity of the State and ultimately can eviscerate even public safety gains. Sustaining security after initial clearing operations is at times even more challenging than conducting the initial operations. Although unlike the heavy forces, traditional police forces, especially if designed as community police, have the capacity to develop trust of the community and ultimately focus on crime prevention, developing such trust often takes a long time. To develop the community’s trust, regular police forces need to conduct frequent on-foot patrols with intensive nonthreatening interactions with the population and minimize the use of force. Moreover, sufficiently robust patrol units need to be placed in designated beats for substantial amount of time, often at least over a year. Establishing oversight mechanisms, including joint police-citizens’ boards, further facilities building trust in the police among the community. After disruption of the established criminal order, street crime often significantly rises and both the heavy-force and community-police units often struggle to contain it. The increase in street crime alienates the population of the retaken territory from the State. Thus developing a capacity to address street crime is critical. Moreover, the community police units tend to be vulnerable (especially initially) to efforts by displaced criminals to reoccupy the cleared territories. Losing a cleared territory back to criminal groups is extremely costly in terms of losing any established trust and being able to recover it. Rather than operating on a priori determined handover schedule, a careful assessment of the relative strength of regular police and criminal groups post-clearing operations is likely to be a better guide for timing the handover from heavy forces to regular police units. Cleared territories often experience not only a peace dividend, but also a peace deficit – in the rise new serious crime (in addition to street crime). Newly – valuable land and other previously-inaccessible resources can lead to land speculation and forced displacement; various other forms of new crime can also significantly rise. Community police forces often struggle to cope with such crime, especially as it is frequently linked to legal business. Such new crime often receives little to no attention in the design of the operations to retake territories from criminal groups. But without developing an effective response to such new crime, the public safety gains of the clearing operations can be altogether lost.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In 2010, the American Association of State Highway and Transportation Officials (AASHTO) released a safety analysis software system known as SafetyAnalyst. SafetyAnalyst implements the empirical Bayes (EB) method, which requires the use of Safety Performance Functions (SPFs). The system is equipped with a set of national default SPFs, and the software calibrates the default SPFs to represent the agency's safety performance. However, it is recommended that agencies generate agency-specific SPFs whenever possible. Many investigators support the view that the agency-specific SPFs represent the agency data better than the national default SPFs calibrated to agency data. Furthermore, it is believed that the crash trends in Florida are different from the states whose data were used to develop the national default SPFs. In this dissertation, Florida-specific SPFs were developed using the 2008 Roadway Characteristics Inventory (RCI) data and crash and traffic data from 2007-2010 for both total and fatal and injury (FI) crashes. The data were randomly divided into two sets, one for calibration (70% of the data) and another for validation (30% of the data). The negative binomial (NB) model was used to develop the Florida-specific SPFs for each of the subtypes of roadway segments, intersections and ramps, using the calibration data. Statistical goodness-of-fit tests were performed on the calibrated models, which were then validated using the validation data set. The results were compared in order to assess the transferability of the Florida-specific SPF models. The default SafetyAnalyst SPFs were calibrated to Florida data by adjusting the national default SPFs with local calibration factors. The performance of the Florida-specific SPFs and SafetyAnalyst default SPFs calibrated to Florida data were then compared using a number of methods, including visual plots and statistical goodness-of-fit tests. The plots of SPFs against the observed crash data were used to compare the prediction performance of the two models. Three goodness-of-fit tests, represented by the mean absolute deviance (MAD), the mean square prediction error (MSPE), and Freeman-Tukey R2 (R2FT), were also used for comparison in order to identify the better-fitting model. The results showed that Florida-specific SPFs yielded better prediction performance than the national default SPFs calibrated to Florida data. The performance of Florida-specific SPFs was further compared with that of the full SPFs, which include both traffic and geometric variables, in two major applications of SPFs, i.e., crash prediction and identification of high crash locations. The results showed that both SPF models yielded very similar performance in both applications. These empirical results support the use of the flow-only SPF models adopted in SafetyAnalyst, which require much less effort to develop compared to full SPFs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In 2010, the American Association of State Highway and Transportation Officials (AASHTO) released a safety analysis software system known as SafetyAnalyst. SafetyAnalyst implements the empirical Bayes (EB) method, which requires the use of Safety Performance Functions (SPFs). The system is equipped with a set of national default SPFs, and the software calibrates the default SPFs to represent the agency’s safety performance. However, it is recommended that agencies generate agency-specific SPFs whenever possible. Many investigators support the view that the agency-specific SPFs represent the agency data better than the national default SPFs calibrated to agency data. Furthermore, it is believed that the crash trends in Florida are different from the states whose data were used to develop the national default SPFs. In this dissertation, Florida-specific SPFs were developed using the 2008 Roadway Characteristics Inventory (RCI) data and crash and traffic data from 2007-2010 for both total and fatal and injury (FI) crashes. The data were randomly divided into two sets, one for calibration (70% of the data) and another for validation (30% of the data). The negative binomial (NB) model was used to develop the Florida-specific SPFs for each of the subtypes of roadway segments, intersections and ramps, using the calibration data. Statistical goodness-of-fit tests were performed on the calibrated models, which were then validated using the validation data set. The results were compared in order to assess the transferability of the Florida-specific SPF models. The default SafetyAnalyst SPFs were calibrated to Florida data by adjusting the national default SPFs with local calibration factors. The performance of the Florida-specific SPFs and SafetyAnalyst default SPFs calibrated to Florida data were then compared using a number of methods, including visual plots and statistical goodness-of-fit tests. The plots of SPFs against the observed crash data were used to compare the prediction performance of the two models. Three goodness-of-fit tests, represented by the mean absolute deviance (MAD), the mean square prediction error (MSPE), and Freeman-Tukey R2 (R2FT), were also used for comparison in order to identify the better-fitting model. The results showed that Florida-specific SPFs yielded better prediction performance than the national default SPFs calibrated to Florida data. The performance of Florida-specific SPFs was further compared with that of the full SPFs, which include both traffic and geometric variables, in two major applications of SPFs, i.e., crash prediction and identification of high crash locations. The results showed that both SPF models yielded very similar performance in both applications. These empirical results support the use of the flow-only SPF models adopted in SafetyAnalyst, which require much less effort to develop compared to full SPFs.