4 resultados para Lightcone fluctuation

em Digital Commons at Florida International University


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Small-bodied fishes constitute an important assemblage in many wetlands. In wetlands that dry periodically except for small permanent waterbodies, these fishes are quick to respond to change and can undergo large fluctuations in numbers and biomasses. An important aspect of landscapes that are mixtures of marsh and permanent waterbodies is that high rates of biomass production occur in the marshes during flooding phases, while the permanent waterbodies serve as refuges for many biotic components during the dry phases. The temporal and spatial dynamics of the small fishes are ecologically important, as these fishes provide a crucial food base for higher trophic levels, such as wading birds. We develop a simple model that is analytically tractable, describing the main processes of the spatio-temporal dynamics of a population of small-bodied fish in a seasonal wetland environment, consisting of marsh and permanent waterbodies. The population expands into newly flooded areas during the wet season and contracts during declining water levels in the dry season. If the marsh dries completely during these times (a drydown), the fish need refuge in permanent waterbodies. At least three new and general conclusions arise from the model: (1) there is an optimal rate at which fish should expand into a newly flooding area to maximize population production; (2) there is also a fluctuation amplitude of water level that maximizes fish production, and (3) there is an upper limit on the number of fish that can reach a permanent waterbody during a drydown, no matter how large the marsh surface area is that drains into the waterbody. Because water levels can be manipulated in many wetlands, it is useful to have an understanding of the role of these fluctuations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Key to predicting impacts of predation is understanding the mechanisms through which predators impact prey populations. While consumptive effects are well-known, non-consumptive predator effects (risk effects) are increasingly being recognized as important. Studies of risk effects, however, have focused largely on how trade-offs between food and safety affect fitness. Less documented, and appreciated, is the potential for predator presence to directly suppress prey reproduction and affect life-history characteristics. For the first time, we tested the effects of visual predator cues on reproduction of two prey species with different reproductive modes, lecithotrophy (i.e. embryonic development primarily fueled by yolk) and matrotrophy (i.e. energy for embryonic development directly supplied by the mother to the embryo through a vascular connection). Predation risk suppressed reproduction in the lecithotrophic prey (Gambusia holbrokii) but not the matrotroph (Heterandria formosa). Predator stress caused G. holbrooki to reduce clutch size by 43%, and to produce larger and heavier offspring compared to control females. H. formosa, however, did not show any such difference. In G. holbrooki we also found a significantly high percentage (14%) of stillbirths in predator-exposed treatments compared to controls (2%). To the best of our knowledge, this is the first direct empirical evidence of predation stress affecting stillbirths in prey. Our results suggest that matrotrophy, superfetation (clutch overlap), or both decrease the sensitivity of mothers to environmental fluctuation in resource (food) and stress (predation risk) levels compared to lecithotrophy. These mechanisms should be considered both when modeling consequences of perceived risk of predation on prey-predator population dynamics and when seeking to understand the evolution of reproductive modes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In aquatic ecosystems, hydrological fluctuation may generate a gradient of lifehistory responses associated with marsh drying. This study was conducted in the Florida Everglades to document spatial and temporal variability in growth and survivorship of the bluefin killifish (Lucania goodei) from six populations along a hydroperiod gradient. The otolith-microstructure analysis of field-collected fish was used to estimate growth rate and those data were combined with field-density estimates for survivorship analysis. Otolith analysis revealed that L. goodei is extremely short-lived with no variation in growth rates and very little spatial or temporal variation in survivorship. These results suggest that bluefin killifish populations experience similar life histories across a diversity of hydroperiods either through well-mixed populations homogenizing these vital rates, or more likely, that a multitude of factors force L. goodei to respond to these "stressors" in a similar fashion across hydroperiod gradients.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The fluctuation in water demand in the Redland community of Miami-Dade County was examined using land use data from 2001 and 2011 and water estimation techniques provided by local and state agencies. The data was converted to 30 m mosaicked raster grids that indicated land use change, and associated water demand measured in gallons per day per acre. The results indicate that, first, despite an increase in population, water demand decreased overall in Redland from 2001 to 2011. Second, conversion of agricultural lands to residential lands actually caused a decrease in water demand in most cases while acquisition of farmland by public agencies also caused a sharp decline. Third, conversion of row crops and groves to nurseries was substantial and resulted in a significant increase in water demand in all such areas converted. Finally, estimating water demand based on land use, rather than population, is a more accurate approach.