2 resultados para Light-independent
em Digital Commons at Florida International University
Resumo:
The impact of eliminating extraneous sound and light on students’ achievement was investigated under four conditions: Light and Sound controlled, Sound Only controlled, Light Only controlled and neither Light nor Sound controlled. Group, age and gender were the control variables. Four randomly selected groups of high school freshmen students with different backgrounds were the participants in this study. Academic achievement was the dependent variable measured on a pretest, a posttest and a post-posttest, each separated by an interval of 15 days. ANOVA was used to test the various hypotheses related to the impact of eliminating sound and light on student learning. Independent sample T tests on the effect of gender indicated a significant effect while age was non- significant. Follow up analysis indicated that sound and light are not potential sources of extraneous load when tested individually. However, the combined effect of sound and light seems to be a potential source of extrinsic load. The findings revealed that the performance of the Sound and Light controlled group was greater during the posttest and post-posttest. The overall performance of boys was greater than that of girls. Results indicated a significant interaction effect between group and gender on treatment subjects. However gender alone was non-significant. Performance of group by age had no significant interaction and age alone was non-significant in the posttest and post-posttest. Based on the results obtained sound and light combined seemed to be the potential sources of extraneous load in this type of learning environment. This finding supports previous research on the effect of sound and light on learning. The findings of this study show that extraneous sound and light have an impact on learning. These findings can be used to design better learning environments. Such environments can be achieved with different electric lighting and sound systems that provide optimal color rendering, low glare, low flicker, low noise and reverberation. These environments will help people avoid unwanted distraction, drowsiness, and photosensitive behavior.
Resumo:
Coral reefs are declining worldwide due to increased incidence of climate-induced coral bleaching, which will have widespread biodiversity and economic impacts. A simple method to measure the sub-bleaching level of heat-light stress experienced by corals would greatly inform reef management practices by making it possible to assess the distribution of bleaching risks among individual reef sites. Gene expression analysis based on quantitative PCR (qPCR) can be used as a diagnostic tool to determine coral condition in situ. We evaluated the expression of 13 candidate genes during heat-light stress in a common Caribbean coral Porites astreoides, and observed strong and consistent changes in gene expression in two independent experiments. Furthermore, we found that the apparent return to baseline expression levels during a recovery phase was rapid, despite visible signs of colony bleaching. We show that the response to acute heat-light stress in P. astreoides can be monitored by measuring the difference in expression of only two genes: Hsp16 and actin. We demonstrate that this assay discriminates between corals sampled from two field sites experiencing different temperatures. We also show that the assay is applicable to an Indo-Pacific congener, P. lobata, and therefore could potentially be used to diagnose acute heat-light stress on coral reefs worldwide.