2 resultados para Library storage centers -- Catalonia

em Digital Commons at Florida International University


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The implementation of collaborative planning and teaching models in ten flexibly scheduled elementary and middle school library media centers was studied to determine which factors facilitated the collaborative planning process and to learn what occurs when library media specialists (LMSs) and classroom teachers (CTs) plan together. In this qualitative study, 61 principals, CTs, and LMSs were interviewed on a range of topics including the principal's role, school climate, the value of team planning, the importance of information literacy instruction, and the ideal learning environment. Other data sources were observations, videotapes of planning sessions, and documents. This three-year school reform effort was funded by the Library Power Project to improve library programs, to encourage collaborative planning, and to increase curricular integration of information literacy skills instruction. ^ The findings included a description of typical planning sessions and the identification of several major factors which impacted the success of collaborative planning: the individuals involved, school climate, time for planning, the organization of the school, the facility and collection, and training. Of these factors, the characteristics and actions of the people involved were most critical to the implementation of the innovation. The LMS was the pivotal player and, in the views of CTs, principals, and LMSs themselves, must be knowledgeable about curriculum, the library collection, and instructional design and delivery; must be open and welcoming to CTs and use good interpersonal skills; and must be committed to information literacy instruction and willing to act as a change agent. The support of the principal was vital; in schools with successful programs, the principal served as an advocate for collaborative planning and information literacy instruction, provided financial support for the library program including clerical staff, and arranged for LMSs and CTs to have time during the school day to plan together. ^ CTs involved in positive planning partnerships with LMSs were flexible, were open to change, used a variety of instructional materials, expected students to be actively involved in their own learning, and were willing to team teach with LMSs. Most CTs planning with LMSs made lesson plans in advance and preferred to plan with others. Also, most CTs in this study planned with grade level or departmental groups, which expedited the delivery of information literacy instruction and the effective use of planning time. ^ Implications of the findings of this research project were discussed for individual schools, for school districts, and for colleges and universities training LMSs, CTs, and administrators. Suggestions for additional research were also included. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electrical energy is an essential resource for the modern world. Unfortunately, its price has almost doubled in the last decade. Furthermore, energy production is also currently one of the primary sources of pollution. These concerns are becoming more important in data-centers. As more computational power is required to serve hundreds of millions of users, bigger data-centers are becoming necessary. This results in higher electrical energy consumption. Of all the energy used in data-centers, including power distribution units, lights, and cooling, computer hardware consumes as much as 80%. Consequently, there is opportunity to make data-centers more energy efficient by designing systems with lower energy footprint. Consuming less energy is critical not only in data-centers. It is also important in mobile devices where battery-based energy is a scarce resource. Reducing the energy consumption of these devices will allow them to last longer and re-charge less frequently. Saving energy in computer systems is a challenging problem. Improving a system's energy efficiency usually comes at the cost of compromises in other areas such as performance or reliability. In the case of secondary storage, for example, spinning-down the disks to save energy can incur high latencies if they are accessed while in this state. The challenge is to be able to increase the energy efficiency while keeping the system as reliable and responsive as before. This thesis tackles the problem of improving energy efficiency in existing systems while reducing the impact on performance. First, we propose a new technique to achieve fine grained energy proportionality in multi-disk systems; Second, we design and implement an energy-efficient cache system using flash memory that increases disk idleness to save energy; Finally, we identify and explore solutions for the page fetch-before-update problem in caching systems that can: (a) control better I/O traffic to secondary storage and (b) provide critical performance improvement for energy efficient systems.