7 resultados para Leukemia, Myeloid
em Digital Commons at Florida International University
Resumo:
This research is to establish new optimization methods for pattern recognition and classification of different white blood cells in actual patient data to enhance the process of diagnosis. Beckman-Coulter Corporation supplied flow cytometry data of numerous patients that are used as training sets to exploit the different physiological characteristics of the different samples provided. The methods of Support Vector Machines (SVM) and Artificial Neural Networks (ANN) were used as promising pattern classification techniques to identify different white blood cell samples and provide information to medical doctors in the form of diagnostic references for the specific disease states, leukemia. The obtained results prove that when a neural network classifier is well configured and trained with cross-validation, it can perform better than support vector classifiers alone for this type of data. Furthermore, a new unsupervised learning algorithm---Density based Adaptive Window Clustering algorithm (DAWC) was designed to process large volumes of data for finding location of high data cluster in real-time. It reduces the computational load to ∼O(N) number of computations, and thus making the algorithm more attractive and faster than current hierarchical algorithms.
Resumo:
The cause for childhood acute lymphoblastic leukemia (ALL) remains unknown, but male gender is a risk factor, and among ethnicities, Hispanics have the highest risk. In this dissertation, we explored correlations among genetic polymorphisms, birth characteristics, and the risk of childhood ALL in a multi-ethnic sample in 161 cases and 231 controls recruited contemporaneously (2007-2012) in Houston, TX. We first examined three lymphoma risk markers, since lymphoma and ALL both stem from lymphoid cells. Of these, rs2395185 showed a risk association in non-Hispanic White males (OR=2.8, P=0.02; P interaction=0.03 for gender), but not in Hispanics. We verified previously known risk associations to validate the case-control sample. Mutations of HFE (C282Y, H63D) were genotyped to test whether iron-regulatory gene (IRG) variants known to elevate iron levels increase childhood ALL risk. Being positive for either polymorphism yielded only a modestly elevated OR in males, which increased to 2.96 (P=0.01) in the presence of a particular transferrin receptor (TFRC) genotype for rs3817672 (Pinteraction=0.04). SNP rs3817672 itself showed an ethnicity-specific association (P interaction=0.02 for ethnicity). We then examined additional IRG SNPs (rs422982, rs855791, rs733655), which showed risk associations in males (ORs=1.52 to 2.60). A polygenic model based on the number of polymorphic alleles in five IRG SNPs revealed a linear increase in risk (OR=2.00 per incremental change; P=0.002). Having three or more alleles compared with none was associated with increased risk in males (OR=4.12; P=0.004). Significant risk associations with childhood ALL was found with birth length (OR=1.18 per inch, P=0.04), high birth weight (>4,000g) (OR=1.93, P=0.01), and with gestational age (OR=1.10 per week, P=0.04). We observed a negative correlation between HFE SNP rs9366637 and gestational age (P=0.005), again, stronger in males ( P=0.001) and interacting with TFRC (P interaction=0.05). Our results showed that (i) ALL risk markers do not show universal associations across ethnicities or between genders, (ii) IRG SNPs modify ALL risk presumably by their effects on iron levels, (iii) a negative correlation between an HFE SNP and gestational age exists, which implicates an iron-related mechanism. The results suggest that currently unregulated supplemental iron intake may have implications on childhood ALL development.
Resumo:
Bio-systems are inherently complex information processing systems. Furthermore, physiological complexities of biological systems limit the formation of a hypothesis in terms of behavior and the ability to test hypothesis. More importantly the identification and classification of mutation in patients are centric topics in today's cancer research. Next generation sequencing (NGS) technologies can provide genome-wide coverage at a single nucleotide resolution and at reasonable speed and cost. The unprecedented molecular characterization provided by NGS offers the potential for an individualized approach to treatment. These advances in cancer genomics have enabled scientists to interrogate cancer-specific genomic variants and compare them with the normal variants in the same patient. Analysis of this data provides a catalog of somatic variants, present in tumor genome but not in the normal tissue DNA. In this dissertation, we present a new computational framework to the problem of predicting the number of mutations on a chromosome for a certain patient, which is a fundamental problem in clinical and research fields. We begin this dissertation with the development of a framework system that is capable of utilizing published data from a longitudinal study of patients with acute myeloid leukemia (AML), who's DNA from both normal as well as malignant tissues was subjected to NGS analysis at various points in time. By processing the sequencing data at the time of cancer diagnosis using the components of our framework, we tested it by predicting the genomic regions to be mutated at the time of relapse and, later, by comparing our results with the actual regions that showed mutations (discovered at relapse time). We demonstrate that this coupling of the algorithm pipeline can drastically improve the predictive abilities of searching a reliable molecular signature. Arguably, the most important result of our research is its superior performance to other methods like Radial Basis Function Network, Sequential Minimal Optimization, and Gaussian Process. In the final part of this dissertation, we present a detailed significance, stability and statistical analysis of our model. A performance comparison of the results are presented. This work clearly lays a good foundation for future research for other types of cancer.^
Resumo:
I proposed the study of two distinct aspects of Ten-Eleven Translocation 2 (TET2) protein for understanding specific functions in different body systems. In Part I, I characterized the molecular mechanisms of Tet2 in the hematological system. As the second member of Ten-Eleven Translocation protein family, TET2 is frequently mutated in leukemic patients. Previous studies have shown that the TET2 mutations frequently occur in 20% myelodysplastic syndrome/myeloproliferative neoplasm (MDS/MPN), 10% T-cell lymphoma leukemia and 2% B-cell lymphoma leukemia. Genetic mouse models also display distinct phenotypes of various types of hematological malignancies. I performed 5-hydroxymethylcytosine (5hmC) chromatin immunoprecipitation sequencing (ChIP-Seq) and RNA sequencing (RNA-Seq) of hematopoietic stem/progenitor cells to determine whether the deletion of Tet2 can affect the abundance of 5hmC at myeloid, T-cell and B-cell specific gene transcription start sites, which ultimately result in various hematological malignancies. Subsequent Exome sequencing (Exome-Seq) showed that disease-specific genes are mutated in different types of tumors, which suggests that TET2 may protect the genome from being mutated. The direct interaction between TET2 and Mutator S Homolog 6 (MSH6) protein suggests TET2 is involved in DNA mismatch repair. Finally, in vivo mismatch repair studies show that the loss of Tet2 causes a mutator phenotype. Taken together, my data indicate that TET2 binds to MSH6 to protect genome integrity. In Part II, I intended to better understand the role of Tet2 in the nervous system. 5-hydroxymethylcytosine regulates epigenetic modification during neurodevelopment and aging. Thus, Tet2 may play a critical role in regulating adult neurogenesis. To examine the physiological significance of Tet2 in the nervous system, I first showed that the deletion of Tet2 reduces the 5hmC levels in neural stem cells. Mice lacking Tet2 show abnormal hippocampal neurogenesis along with 5hmC alternations at different gene promoters and corresponding gene expression downregulation. Through the luciferase reporter assay, two neural factors Neurogenic differentiation 1 (NeuroD1) and Glial fibrillary acidic protein (Gfap) were down-regulated in Tet2 knockout cells. My results suggest that Tet2 regulates neural stem/progenitor cell proliferation and differentiation in adult brain.
Resumo:
Males and age group 1 to 5 years show a much higher risk for childhood acute lymphoblastic leukemia (ALL). We performed a case-only genome-wide association study (GWAS), using the Illumina Infinium HumanCoreExome Chip, to unmask gender- and age-specific risk variants in 240 non-Hispanic white children with ALL recruited at Texas Children’s Cancer Center, Houston, Texas. Besides statistically most significant results, we also considered results that yielded the highest effect sizes. Existing experimental data and bioinformatic predictions were used to complement results, and to examine the biological significance of statistical results. Our study identified novel risk variants for childhood ALL. The SNP, rs4813720 (RASSF2), showed the statistically most significant gender-specific associations (P < 2 x 10-6). Likewise, rs10505918 (SOX5) yielded the lowest P value (P < 1 x 10-5) for age-specific associations, and also showed the statistically most significant association with age-at-onset (P < 1 x 10-4). Two SNPs, rs12722042 and 12722039, from the HLA-DQA1 region yielded the highest effect sizes (odds ratio (OR) = 15.7; P = 0.002) for gender-specific results, and the SNP, rs17109582 (OR = 12.5; P = 0.006), showed the highest effect size for age-specific results. Sex chromosome variants did not appear to be involved in gender-specific associations. The HLA-DQA1 SNPs belong to DQA1*01:07and confirmed previously reported male-specific association with DQA1*01:07. Twenty one of the SNPs identified as risk markers for gender- or age-specific associations were located in the transcription factor binding sites and 56 SNPs were non-synonymous variants, likely to alter protein function. Although bioinformatic analysis did not implicate a particular mechanism for gender- and age-specific associations, RASSF2 has an estrogen receptor-alpha binding site in its promoter. The unknown mechanisms may be due to lack of interest in gender- and age-specificity in associations. These results provide a foundation for further studies to examine the gender- and age-differential in childhood ALL risk. Following replication and mechanistic studies, risk factors for one gender or age group may have a potential to be used as biomarkers for targeted intervention for prevention and maybe also for treatment.
Resumo:
I proposed the study of two distinct aspects of Ten-Eleven Translocation 2 (TET2) protein for understanding specific functions in different body systems. ^ In Part I, I characterized the molecular mechanisms of Tet2 in the hematological system. As the second member of Ten-Eleven Translocation protein family, TET2 is frequently mutated in leukemic patients. Previous studies have shown that the TET2 mutations frequently occur in 20% myelodysplastic syndrome/myeloproliferative neoplasm (MDS/MPN), 10% T-cell lymphoma leukemia and 2% B-cell lymphoma leukemia. Genetic mouse models also display distinct phenotypes of various types of hematological malignancies. I performed 5-hydroxymethylcytosine (5hmC) chromatin immunoprecipitation sequencing (ChIP-Seq) and RNA sequencing (RNA-Seq) of hematopoietic stem/progenitor cells to determine whether the deletion of Tet2 can affect the abundance of 5hmC at myeloid, T-cell and B-cell specific gene transcription start sites, which ultimately result in various hematological malignancies. Subsequent Exome sequencing (Exome-Seq) showed that disease-specific genes are mutated in different types of tumors, which suggests that TET2 may protect the genome from being mutated. The direct interaction between TET2 and Mutator S Homolog 6 (MSH6) protein suggests TET2 is involved in DNA mismatch repair. Finally, in vivo mismatch repair studies show that the loss of Tet2 causes a mutator phenotype. Taken together, my data indicate that TET2 binds to MSH6 to protect genome integrity. ^ In Part II, I intended to better understand the role of Tet2 in the nervous system. 5-hydroxymethylcytosine regulates epigenetic modification during neurodevelopment and aging. Thus, Tet2 may play a critical role in regulating adult neurogenesis. To examine the physiological significance of Tet2 in the nervous system, I first showed that the deletion of Tet2 reduces the 5hmC levels in neural stem cells. Mice lacking Tet2 show abnormal hippocampal neurogenesis along with 5hmC alternations at different gene promoters and corresponding gene expression downregulation. Through the luciferase reporter assay, two neural factors Neurogenic differentiation 1 (NeuroD1) and Glial fibrillary acidic protein (Gfap) were down-regulated in Tet2 knockout cells. My results suggest that Tet2 regulates neural stem/progenitor cell proliferation and differentiation in adult brain.^
Resumo:
Males and age group 1 to 5 years show a much higher risk for childhood acute lymphoblastic leukemia (ALL). We performed a case-only genome-wide association study (GWAS), using the Illumina Infinium HumanCoreExome Chip, to unmask gender- and age-specific risk variants in 240 non-Hispanic white children with ALL recruited at Texas Children’s Cancer Center, Houston, Texas. Besides statistically most significant results, we also considered results that yielded the highest effect sizes. Existing experimental data and bioinformatic predictions were used to complement results, and to examine the biological significance of statistical results. ^ Our study identified novel risk variants for childhood ALL. The SNP, rs4813720 (RASSF2), showed the statistically most significant gender-specific associations (P < 2 x 10-6). Likewise, rs10505918 (SOX5) yielded the lowest P value (P < 1 x 10-5 ) for age-specific associations, and also showed the statistically most significant association with age-at-onset (P < 1 x 10-4). Two SNPs, rs12722042 and 12722039, from the HLA-DQA1 region yielded the highest effect sizes (odds ratio (OR) = 15.7; P = 0.002) for gender-specific results, and the SNP, rs17109582 (OR = 12.5; P = 0.006), showed the highest effect size for age-specific results. Sex chromosome variants did not appear to be involved in gender-specific associations. ^ The HLA-DQA1 SNPs belong to DQA1*01:07and confirmed previously reported male-specific association with DQA1*01:07. Twenty one of the SNPs identified as risk markers for gender- or age-specific associations were located in the transcription factor binding sites and 56 SNPs were non-synonymous variants, likely to alter protein function. Although bioinformatic analysis did not implicate a particular mechanism for gender- and age-specific associations, RASSF2 has an estrogen receptor-alpha binding site in its promoter. The unknown mechanisms may be due to lack of interest in gender- and age-specificity in associations. These results provide a foundation for further studies to examine the gender- and age-differential in childhood ALL risk. Following replication and mechanistic studies, risk factors for one gender or age group may have a potential to be used as biomarkers for targeted intervention for prevention and maybe also for treatment.^