2 resultados para Layer Thickness

em Digital Commons at Florida International University


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The development of a new set of frost property measurement techniques to be used in the control of frost growth and defrosting processes in refrigeration systems was investigated. Holographic interferometry and infrared thermometry were used to measure the temperature of the frost-air interface, while a beam element load sensor was used to obtain the weight of a deposited frost layer. The proposed measurement techniques were tested for the cases of natural and forced convection, and the characteristic charts were obtained for a set of operational conditions. ^ An improvement of existing frost growth mathematical models was also investigated. The early stage of frost nucleation was commonly not considered in these models and instead an initial value of layer thickness and porosity was regularly assumed. A nucleation model to obtain the droplet diameter and surface porosity at the end of the early frosting period was developed. The drop-wise early condensation in a cold flat plate under natural convection to a hot (room temperature) and humid air was modeled. A nucleation rate was found, and the relation of heat to mass transfer (Lewis number) was obtained. It was found that the Lewis number was much smaller than unity, which is the standard value usually assumed for most frosting numerical models. The nucleation model was validated against available experimental data for the early nucleation and full growth stages of the frosting process. ^ The combination of frost top temperature and weight variation signals can now be used to control the defrosting timing and the developed early nucleation model can now be used to simulate the entire process of frost growth in any surface material. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Biomaterials have been used for more than a century in the human body to improve body functions and replace damaged tissues. Currently approved and commonly used metallic biomaterials such as, stainless steel, titanium, cobalt chromium and other alloys have been found to have adverse effects leading in some cases, to mechanical failure and rejection of the implant. The physical or chemical nature of the degradation products of some implants initiates an adverse foreign body reaction in the tissue. Some metallic implants remain as permanent fixtures, whereas others such as plates, screws and pins used to secure serious fractures are removed by a second surgical procedure after the tissue has healed sufficiently. However, repeat surgical procedures increase the cost of health care and the possibility of patient morbidity. This study focuses on the development of magnesium based biodegradable alloys/metal matrix composites (MMCs) for orthopedic and cardiovascular applications. The Mg alloys/MMCs possessed good mechanical properties and biocompatible properties. Nine different compositions of Mg alloys/MMCs were manufactured and surface treated. Their degradation behavior, ion leaching, wettability, morphology, cytotoxicity and mechanical properties were determined. Alloying with Zn, Ca, HA and Gd and surface treatment resulted in improved mechanical properties, corrosion resistance, reduced cytotoxicity, lower pH and hydrogen evolution. Anodization resulted in the formation of a distinct oxide layer (thickness 5-10 μm) as compared with that produced on mechanically polished samples (~20-50 nm) under ambient conditions. It is envisaged that the findings of this research will introduce a new class of Mg based biodegradable alloys/MMCs and the emergence of innovative cardiovascular and orthopedic implant devices.^