2 resultados para Laser fields

em Digital Commons at Florida International University


Relevância:

60.00% 60.00%

Publicador:

Resumo:

This dissertation reports experimental studies of nonlinear optical effects manifested by electromagnetically induced transparency (EIT) in cold Rb atoms. The cold Rb atoms are confined in a magneto-optic trap (MOT) obtained with the standard laser cooling and trapping technique. Because of the near zero Doppler shift and a high phase density, the cold Rb sample is well suited for studies of atomic coherence and interference and related applications, and the experiments can be compared quantitatively with theoretical calculations. It is shown that with EIT induced in the multi-level Rb system by laser fields, the linear absorption is suppressed and the nonlinear susceptibility is enhanced, which enables studies of nonlinear optics in the cold atoms with slow photons and at low light intensities. Three independent experiments are described and the experimental results are presented. First, an experimental method that can produce simultaneously co-propagating slow and fast light pulses is discussed and the experimental demonstration is reported. Second, it is shown that in a three-level Rb system coupled by multi-color laser fields, the multi-channel two-photon Raman transitions can be manipulated by the relative phase and frequency of a control laser field. Third, a scheme for all-optical switching near single photon levels is developed. The scheme is based on the phase-dependent multi-photon interference in a coherently coupled four-level system. The phase dependent multi-photon interference is observed and switching of a single light pulse by a control pulse containing ∼20 photons is demonstrated. These experimental studies reveal new phenomena manifested by quantum coherence and interference in cold atoms, contribute to the advancement of fundamental quantum optics and nonlinear optics at ultra-low light intensities, and may lead to the development of new techniques to control quantum states of atoms and photons, which will be useful for applications in quantum measurements and quantum photonic devices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The high velocity of free atoms associated with the thermal motion, together with the velocity distribution of atoms has imposed the ultimate limitation on the precision of ultrahigh resolution spectroscopy. A sample consisting of low velocity atoms would provide a substantial improvement in spectroscopy resolution. To overcome the problem of thermal motion, atomic physicists have pursued two goals; first, the reduction of the thermal motion (cooling); and second, the confinement of the atoms by means of electromagnetic fields (trapping). Cooling carried sufficiently far, eliminates the motional problems, whereas trapping allows for long observation times. In this work the laser cooling and trapping of an argon atomic beam will be discussed. The experiments involve a time-of-flight spectroscopy on metastable argon atoms. Laser deceleration or cooling of atoms is achieved by counter propagating a photon against an atomic beam of metastable atoms. The solution to the Doppler shift problem is achieved using spatially varying magnetic field along the beam path to Zeeman shift the atomic resonance frequency so as to keep the atoms in resonance with a fixed frequency cooling laser. For trapping experiments a Magnetooptical trap (MOT) will be used. The MOT is formed by three pairs of counter-propagating laser beams with mutual opposite circular polarization and a frequency tuned slightly below the center of the atomic resonance and superimposed on a magnetic quadrupole field.