2 resultados para Large database

em Digital Commons at Florida International University


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This research presents several components encompassing the scope of the objective of Data Partitioning and Replication Management in Distributed GIS Database. Modern Geographic Information Systems (GIS) databases are often large and complicated. Therefore data partitioning and replication management problems need to be addresses in development of an efficient and scalable solution. ^ Part of the research is to study the patterns of geographical raster data processing and to propose the algorithms to improve availability of such data. These algorithms and approaches are targeting granularity of geographic data objects as well as data partitioning in geographic databases to achieve high data availability and Quality of Service(QoS) considering distributed data delivery and processing. To achieve this goal a dynamic, real-time approach for mosaicking digital images of different temporal and spatial characteristics into tiles is proposed. This dynamic approach reuses digital images upon demand and generates mosaicked tiles only for the required region according to user's requirements such as resolution, temporal range, and target bands to reduce redundancy in storage and to utilize available computing and storage resources more efficiently. ^ Another part of the research pursued methods for efficient acquiring of GIS data from external heterogeneous databases and Web services as well as end-user GIS data delivery enhancements, automation and 3D virtual reality presentation. ^ There are vast numbers of computing, network, and storage resources idling or not fully utilized available on the Internet. Proposed "Crawling Distributed Operating System "(CDOS) approach employs such resources and creates benefits for the hosts that lend their CPU, network, and storage resources to be used in GIS database context. ^ The results of this dissertation demonstrate effective ways to develop a highly scalable GIS database. The approach developed in this dissertation has resulted in creation of TerraFly GIS database that is used by US government, researchers, and general public to facilitate Web access to remotely-sensed imagery and GIS vector information. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Modern geographical databases, which are at the core of geographic information systems (GIS), store a rich set of aspatial attributes in addition to geographic data. Typically, aspatial information comes in textual and numeric format. Retrieving information constrained on spatial and aspatial data from geodatabases provides GIS users the ability to perform more interesting spatial analyses, and for applications to support composite location-aware searches; for example, in a real estate database: “Find the nearest homes for sale to my current location that have backyard and whose prices are between $50,000 and $80,000”. Efficient processing of such queries require combined indexing strategies of multiple types of data. Existing spatial query engines commonly apply a two-filter approach (spatial filter followed by nonspatial filter, or viceversa), which can incur large performance overheads. On the other hand, more recently, the amount of geolocation data has grown rapidly in databases due in part to advances in geolocation technologies (e.g., GPS-enabled smartphones) that allow users to associate location data to objects or events. The latter poses potential data ingestion challenges of large data volumes for practical GIS databases. In this dissertation, we first show how indexing spatial data with R-trees (a typical data pre-processing task) can be scaled in MapReduce—a widely-adopted parallel programming model for data intensive problems. The evaluation of our algorithms in a Hadoop cluster showed close to linear scalability in building R-tree indexes. Subsequently, we develop efficient algorithms for processing spatial queries with aspatial conditions. Novel techniques for simultaneously indexing spatial with textual and numeric data are developed to that end. Experimental evaluations with real-world, large spatial datasets measured query response times within the sub-second range for most cases, and up to a few seconds for a small number of cases, which is reasonable for interactive applications. Overall, the previous results show that the MapReduce parallel model is suitable for indexing tasks in spatial databases, and the adequate combination of spatial and aspatial attribute indexes can attain acceptable response times for interactive spatial queries with constraints on aspatial data.