4 resultados para Language planning
em Digital Commons at Florida International University
Resumo:
In compliance with the economic internationalization movement and the development of Asia-Pacific Regional Operation Center (APROC) in Taiwan, international business has become more and more important. To sustain favorable trade balances every year and the promotion of APROC in Taiwan, more and more talent with knowledge and skills of Business English are needed. As a consequence, it is necessary to make Business English curriculum appropriate to meet the emerging needs.^ Two groups, experimental and control, received the revised or traditional Business English course to answer the question, "Does the Business English curriculum at Tainan Woman's College of Arts & Technology (TWCAT) meet the needs of students?" Ninety-five subjects were randomly selected from the commercial departments at TWCAT and then randomly assigned to the two groups. In addition, the Business English scores of the subjects' previous semester were collected and analyzed to justify the random selection and assignment. The finding was that their initial equivalence was proved.^ A questionnaire for students and another one for the business community were administered to facilitate data collection and analysis. The results of the questionnaires were used to modify the curriculum content of Business English.^ A final-term examination was given to the subjects at the end of the pilot study of Business English in early May of 1998. The resulting scores of the examination were used to determine if there was a significant difference in learning achievement between the students of the two groups.^ Using Independent Samples Test, significant results indicated that the experimental group had higher level of learning Business English than the control group. The finding supports the hypothesis of this study.^ Recommendations based on these results are that the revised curriculum be adapted and used by TWCAT because it better meets student needs. ^
Resumo:
Near infrared spectroscopy (NIRS) is an emerging non-invasive optical neuro imaging technique that monitors the hemodynamic response to brain activation with ms-scale temporal resolution and sub-cm spatial resolution. The overall goal of my dissertation was to develop and apply NIRS towards investigation of neurological response to language, joint attention and planning and execution of motor skills in healthy adults. Language studies were performed to investigate the hemodynamic response, synchrony and dominance feature of the frontal and fronto-temporal cortex of healthy adults in response to language reception and expression. The mathematical model developed based on granger causality explicated the directional flow of information during the processing of language stimuli by the fronto-temporal cortex. Joint attention and planning/ execution of motor skill studies were performed to investigate the hemodynamic response, synchrony and dominance feature of the frontal cortex of healthy adults and in children (5-8 years old) with autism (for joint attention studies) and individuals with cerebral palsy (for planning/execution of motor skills studies). The joint attention studies on healthy adults showed differences in activation as well as intensity and phase dependent connectivity in the frontal cortex during joint attention in comparison to rest. The joint attention studies on typically developing children showed differences in frontal cortical activation in comparison to that in children with autism. The planning and execution of motor skills studies on healthy adults and individuals with cerebral palsy (CP) showed difference in the frontal cortical dominance, that is, bilateral and ipsilateral dominance, respectively. The planning and execution of motor skills studies also demonstrated the plastic and learning behavior of brain wherein correlation was found between the relative change in total hemoglobin in the frontal cortex and the kinematics of the activity performed by the participants. Thus, during my dissertation the NIRS neuroimaging technique was successfully implemented to investigate the neurological response of language, joint attention and planning and execution of motor skills in healthy adults as well as preliminarily on children with autism and individuals with cerebral palsy. These NIRS studies have long-term potential for the design of early stage interventions in children with autism and customized rehabilitation in individuals with cerebral palsy.
Resumo:
The aim of this study was to develop a practical, versatile and fast dosimetry and radiobiological model for calculation of the 3D dose distribution and radiobiological effectiveness of radioactive stents. The algorithm was written in Matlab 6.5 programming language and is based on the dose point kernel convolution. The dosimetry and radiobiological model was applied for evaluation of the 3D dose distribution of 32P, 90Y, 188Re and 177Lu stents. Of the four, 32P delivers the highest dose, while 90Y, 188Re and 177Lu require high levels of activity to deliver a significant therapeutic dose in the range of 15-30 Gy. Results of the radiobiological model demonstrated that the same physical dose delivered by different radioisotopes produces significantly different radiobiological effects. This type of theoretical dose calculation can be useful in the development of new stent designs, the planning of animal studies and clinical trials, and clinical decisions involving individualized treatment plans.
Resumo:
Near infrared spectroscopy (NIRS) is an emerging non-invasive optical neuro imaging technique that monitors the hemodynamic response to brain activation with ms-scale temporal resolution and sub-cm spatial resolution. The overall goal of my dissertation was to develop and apply NIRS towards investigation of neurological response to language, joint attention and planning and execution of motor skills in healthy adults. Language studies were performed to investigate the hemodynamic response, synchrony and dominance feature of the frontal and fronto-temporal cortex of healthy adults in response to language reception and expression. The mathematical model developed based on granger causality explicated the directional flow of information during the processing of language stimuli by the fronto-temporal cortex. Joint attention and planning/ execution of motor skill studies were performed to investigate the hemodynamic response, synchrony and dominance feature of the frontal cortex of healthy adults and in children (5-8 years old) with autism (for joint attention studies) and individuals with cerebral palsy (for planning/execution of motor skills studies). The joint attention studies on healthy adults showed differences in activation as well as intensity and phase dependent connectivity in the frontal cortex during joint attention in comparison to rest. The joint attention studies on typically developing children showed differences in frontal cortical activation in comparison to that in children with autism. The planning and execution of motor skills studies on healthy adults and individuals with cerebral palsy (CP) showed difference in the frontal cortical dominance, that is, bilateral and ipsilateral dominance, respectively. The planning and execution of motor skills studies also demonstrated the plastic and learning behavior of brain wherein correlation was found between the relative change in total hemoglobin in the frontal cortex and the kinematics of the activity performed by the participants. Thus, during my dissertation the NIRS neuroimaging technique was successfully implemented to investigate the neurological response of language, joint attention and planning and execution of motor skills in healthy adults as well as preliminarily on children with autism and individuals with cerebral palsy. These NIRS studies have long-term potential for the design of early stage interventions in children with autism and customized rehabilitation in individuals with cerebral palsy.