2 resultados para LANTHANIUM OXIDES

em Digital Commons at Florida International University


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The high-pressure and temperature investigations on transition metals, metal doped-oxide system, nanocrystalline materials are presented in this dissertation. The metal-doped oxide systems are technologically important because of their applications, e.g. LSC, opto electronic applications, luminescence from lasers, etc., and from the earth sciences point of view, e.g. the study of trace elements in the MgO-SiO2 system, which accounts for 50% of the Earth's chondritic model. We have carried out thorough investigations on Cr2O3 and on chromium bearing oxides at high PT-conditions using in situ X-ray diffractometry and florescence spectroscopy techniques. Having obtained exciting results, an attempt to focus on the mechanism of the coordination of transition metals in oxides has been made. Additionally, the florescence from the metals in host oxides was found to be helpful to obtain information on structural variations like changes in the coordination of the doped element, formation of new phases, the diffusion processes. The possible reactions taking place at extreme conditions in the MgO-SiO2 system has been observed using florescence as markers. A new heating assemblage has been designed and fabricated for a precise determination of temperature at high pressures. An equation combining pressure shifts of ruby wavelength and temperature has been proposed. We observed that the compressibility of nanocrystalline material (MgO and Ni) is independent of crystallite size. A reduction in the transition pressure of nanocrystalline ceria at high-pressure has been observed as compare to the corresponding bulk material. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The strong couplings between different degrees of freedom are believed to be responsible for novel and complex phenomena discovered in transition metal oxides (TMOs). The physical complexity is directly responsible for their tunability. Creating surfaces/interfaces add an additional ' man-made' twist, approaching the quantum phenomena of correlated materials. ^ The dissertation focused on the structural and electronic properties in proximity of surface of three prototype TMO compounds by using three complementary techniques: scanning tunneling microscopy, angle-resolved photoelectron spectroscopy and low energy electron diffraction, particularly emphasized the effects of broken symmetry and imperfections like defects on the coupling between charge and lattice degrees of freedom. ^ Ca1.5Sr0.5RuO4 is a layered ruthenate with square lattice and at the boundary of magnetic/orbital instability in Ca2-xSrxRuO4. That the substitution of Sr 2+ with Ca2+ causing RuO6 rotation narrows the dxy band width and changes the Fermi surface topology. Particularly, the γ(dxy) Fermi surface sheet exhibited hole-like in Ca1.5Sr0.5RuO4 in contrast to electron-like in Sr2RuO4, showing a strong charge-lattice coupling. ^ Na0.75CoO2 is a layered cobaltite with triangular lattice exhibiting extraordinary thermoelectric properties. The well-ordered CoO2-terminated surface with random Na distribution was observed. However, lattice constants of the surface are smaller than that in bulk. The surface density of states (DOS) showed strong temperature dependence. Especially, an unusual shift of the minimum DOS occurs below 230 K, clearly indicating a local charging effect on the surface. ^ Cd2Re2O7 is the first known pyrochlore oxide superconductor (Tc ∼ 1K). It exhibited an unusual second-order phase transition occurring at TS1 = 200 K and a controversial first-order transition at TS2 = 120 K. While bulk properties display large anomalies at TS1 but rather subtle and sample-dependent changes at TS2, the surface DOS near the EF show no change at T s1 but a substantial increase below TS2---a complete reversal as the signature for the transitions. We argued that crystal imperfections, mainly defects, which were considerably enhanced at the surface, resulted in the transition at TS2. ^