3 resultados para Kwong, Randy

em Digital Commons at Florida International University


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fusarium oxysporum forma specialis cubense is a soilborne phytopathogen that infects banana. The true evolutionary identity of this so called species, Fusarium oxysporum, is still unknown. Many techniques have been applied in order to gain insight for the observed genetic diversity of this species. The current classification system is based on vegetative compatibility groups (VCG's). Vegetative compatibility is a self non-self recognition system in which only those belonging to a VCG can form stable heterokaryons, cells containing two distinct nuclei. Heterokaryons in turn, are formed from hypha! anastomosis, the fusion of two hyphae. Furthermore, subsequent to heterokaryon formation potential mechanisms exist which may generate genetic variability. One is through viral transfer upon hyphal anastomosis. The other mechanism is a form of mitotic recombination referred to as the parasexual cycle. Very little research has been performed to directly obser.ve the cellular events; hypha! anastomosis, heterokaryon formation, and the parasexual cycle in Fusarium oxysporum f. sp. cubense. The purpose of this research was to design and use methods which would allow for the detection of hypha! anastomosis and heterokaryon formation, as well as any characteristics surrounding this event, within and between VCG's in Foe. First, some general growth properties were recorded: the number of nuclei per hypha, the size ofthe hyphal tip cell, the size of the cell adjacent to the hypha! tip (pre-tip) cell, and the number of cells to the first branch point. Second, four methods were designed in order to assay hyphal anastomosis and heterokaryon formation: 1) pairings on membrane: phase or brightfield microscopy, 2) pairings on membrane: fluorescence microscopy, 3) spore crosses: fluorescence microscopy, and 4) double picks in fractionated MMA. All of these methods were promtsmg.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recent studies suggest that coastal ecosystems can bury significantly more C than tropical forests, indicating that continued coastal development and exposure to sea level rise and storms will have global biogeochemical consequences. The Florida Coastal Everglades Long Term Ecological Research (FCE LTER) site provides an excellent subtropical system for examining carbon (C) balance because of its exposure to historical changes in freshwater distribution and sea level rise and its history of significant long-term carbon-cycling studies. FCE LTER scientists used net ecosystem C balance and net ecosystem exchange data to estimate C budgets for riverine mangrove, freshwater marsh, and seagrass meadows, providing insights into the magnitude of C accumulation and lateral aquatic C transport. Rates of net C production in the riverine mangrove forest exceeded those reported for many tropical systems, including terrestrial forests, but there are considerable uncertainties around those estimates due to the high potential for gain and loss of C through aquatic fluxes. C production was approximately balanced between gain and loss in Everglades marshes; however, the contribution of periphyton increases uncertainty in these estimates. Moreover, while the approaches used for these initial estimates were informative, a resolved approach for addressing areas of uncertainty is critically needed for coastal wetland ecosystems. Once resolved, these C balance estimates, in conjunction with an understanding of drivers and key ecosystem feedbacks, can inform cross-system studies of ecosystem response to long-term changes in climate, hydrologic management, and other land use along coastlines.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This material is based upon work supported by the National Science Foundation through the Florida Coastal Everglades Long-Term Ecological Research program under Cooperative Agreements #DBI-0620409 and #DEB-9910514. This image is made available for non-commercial or educational use only.