5 resultados para James D. Meier
em Digital Commons at Florida International University
Resumo:
A shortage of labor exists in the hospitality industry, even to the point that many vacant positions go unfilled. The author discusses some solutions to the problem, including a look at retirees, working mothers, and the disabled.
Resumo:
The tragic events of September 11th ushered a new era of unprecedented challenges. Our nation has to be protected from the alarming threats of adversaries. These threats exploit the nation's critical infrastructures affecting all sectors of the economy. There is the need for pervasive monitoring and decentralized control of the nation's critical infrastructures. The communications needs of monitoring and control of critical infrastructures was traditionally catered for by wired communication systems. These technologies ensured high reliability and bandwidth but are however very expensive, inflexible and do not support mobility and pervasive monitoring. The communication protocols are Ethernet-based that used contention access protocols which results in high unsuccessful transmission and delay. An emerging class of wireless networks, named embedded wireless sensor and actuator networks has potential benefits for real-time monitoring and control of critical infrastructures. The use of embedded wireless networks for monitoring and control of critical infrastructures requires secure, reliable and timely exchange of information among controllers, distributed sensors and actuators. The exchange of information is over shared wireless media. However, wireless media is highly unpredictable due to path loss, shadow fading and ambient noise. Monitoring and control applications have stringent requirements on reliability, delay and security. The primary issue addressed in this dissertation is the impact of wireless media in harsh industrial environment on the reliable and timely delivery of critical data. In the first part of the dissertation, a combined networking and information theoretic approach was adopted to determine the transmit power required to maintain a minimum wireless channel capacity for reliable data transmission. The second part described a channel-aware scheduling scheme that ensured efficient utilization of the wireless link and guaranteed delay. Various analytical evaluations and simulations are used to evaluate and validate the feasibility of the methodologies and demonstrate that the protocols achieved reliable and real-time data delivery in wireless industrial networks.
Resumo:
The concentrations of tritium (3H) and helium isotopes (3He and4He) were used as tracers of groundwater flow in the surficial aquifer system (SAS) beneath Everglades National Park (ENP), south Florida. From ages determined by 3H/3He dating techniques, groundwater within the upper 28 m originated within the last 30 years. Below 28 m, waters originated prior to 30 years before present with evidence of mixing at the interface. Interannual variation of the 3H/3He ages within the upper 28 m was significant throughout the 3 year investigation, corresponding with varying hydrologic conditions. In the region of Taylor Slough Bridge, younger groundwater was consistently detected below older groundwater in the Biscayne Aquifer, suggesting preferential flow to the lower part of the aquifer. An increase in 4He with depth in the SAS indicated that radiogenic 4He produced in the underlying Hawthorn Group migrates into the SAS by diffusion. Higher Δ4He values in brackish groundwaters compared to fresh waters from similar depths suggested a possible enhanced vertical transport of4He in the seawater mixing zone. Groundwater salinity measurements indicated the presence of a wide (6–28 km) seawater mixing zone. Comparison of groundwater levels with surface water levels in this zone indicated the potential for brackish groundwater discharge to the overlying Everglades surface water.
Resumo:
Poor agreement between 3H/3He ages and CFC-11 and CFC-12 ages suggests that CFCs may not be conservative tracers in the Everglades National Park. 3H/3He ages were used to calculate the expected concentration of CFC-11 and CFC-12 in groundwater from wells 2 to 73 m deep. The expected concentrations of CFCs were compared to the measured concentrations and plots of the % CFC-12 and CFC-11 remaining offered no evidence that significant CFC removal was occurring in the groundwater at depths ≥2 m, suggesting that CFC removal occurs at shallower depths. Except where CFC contamination was suspected, CFC-11, CFC-12 and CFC-113 concentrations in fresh surface water were nearly always below solubility equilibrium with the atmosphere. Measurements of CFC-11, CFC-12 and CFC-113 in pore water indicate a 50–90% decrease in concentration 5 cm below the groundwater–surface water (GW–SW) interface. In the same 5 cm interval CH4 concentrations increased by 300–1000%. This suggested that CFCs were removed at the GW–SW interface, possibly by methane-producing bacteria. CFC derived recharge ages should therefore be viewed with caution when recharging water percolates through anoxic methanogenic sediments.