4 resultados para Italian industrial property code
em Digital Commons at Florida International University
Resumo:
Orthogonal Frequency-Division Multiplexing (OFDM) has been proved to be a promising technology that enables the transmission of higher data rate. Multicarrier Code-Division Multiple Access (MC-CDMA) is a transmission technique which combines the advantages of both OFDM and Code-Division Multiplexing Access (CDMA), so as to allow high transmission rates over severe time-dispersive multi-path channels without the need of a complex receiver implementation. Also MC-CDMA exploits frequency diversity via the different subcarriers, and therefore allows the high code rates systems to achieve good Bit Error Rate (BER) performances. Furthermore, the spreading in the frequency domain makes the time synchronization requirement much lower than traditional direct sequence CDMA schemes. There are still some problems when we use MC-CDMA. One is the high Peak-to-Average Power Ratio (PAPR) of the transmit signal. High PAPR leads to nonlinear distortion of the amplifier and results in inter-carrier self-interference plus out-of-band radiation. On the other hand, suppressing the Multiple Access Interference (MAI) is another crucial problem in the MC-CDMA system. Imperfect cross-correlation characteristics of the spreading codes and the multipath fading destroy the orthogonality among the users, and then cause MAI, which produces serious BER degradation in the system. Moreover, in uplink system the received signals at a base station are always asynchronous. This also destroys the orthogonality among the users, and hence, generates MAI which degrades the system performance. Besides those two problems, the interference should always be considered seriously for any communication system. In this dissertation, we design a novel MC-CDMA system, which has low PAPR and mitigated MAI. The new Semi-blind channel estimation and multi-user data detection based on Parallel Interference Cancellation (PIC) have been applied in the system. The Low Density Parity Codes (LDPC) has also been introduced into the system to improve the performance. Different interference models are analyzed in multi-carrier communication systems and then the effective interference suppression for MC-CDMA systems is employed in this dissertation. The experimental results indicate that our system not only significantly reduces the PAPR and MAI but also effectively suppresses the outside interference with low complexity. Finally, we present a practical cognitive application of the proposed system over the software defined radio platform.
Resumo:
Orthogonal Frequency-Division Multiplexing (OFDM) has been proved to be a promising technology that enables the transmission of higher data rate. Multicarrier Code-Division Multiple Access (MC-CDMA) is a transmission technique which combines the advantages of both OFDM and Code-Division Multiplexing Access (CDMA), so as to allow high transmission rates over severe time-dispersive multi-path channels without the need of a complex receiver implementation. Also MC-CDMA exploits frequency diversity via the different subcarriers, and therefore allows the high code rates systems to achieve good Bit Error Rate (BER) performances. Furthermore, the spreading in the frequency domain makes the time synchronization requirement much lower than traditional direct sequence CDMA schemes. There are still some problems when we use MC-CDMA. One is the high Peak-to-Average Power Ratio (PAPR) of the transmit signal. High PAPR leads to nonlinear distortion of the amplifier and results in inter-carrier self-interference plus out-of-band radiation. On the other hand, suppressing the Multiple Access Interference (MAI) is another crucial problem in the MC-CDMA system. Imperfect cross-correlation characteristics of the spreading codes and the multipath fading destroy the orthogonality among the users, and then cause MAI, which produces serious BER degradation in the system. Moreover, in uplink system the received signals at a base station are always asynchronous. This also destroys the orthogonality among the users, and hence, generates MAI which degrades the system performance. Besides those two problems, the interference should always be considered seriously for any communication system. In this dissertation, we design a novel MC-CDMA system, which has low PAPR and mitigated MAI. The new Semi-blind channel estimation and multi-user data detection based on Parallel Interference Cancellation (PIC) have been applied in the system. The Low Density Parity Codes (LDPC) has also been introduced into the system to improve the performance. Different interference models are analyzed in multi-carrier communication systems and then the effective interference suppression for MC-CDMA systems is employed in this dissertation. The experimental results indicate that our system not only significantly reduces the PAPR and MAI but also effectively suppresses the outside interference with low complexity. Finally, we present a practical cognitive application of the proposed system over the software defined radio platform.
A framework for transforming, analyzing, and realizing software designs in unified modeling language
Resumo:
Unified Modeling Language (UML) is the most comprehensive and widely accepted object-oriented modeling language due to its multi-paradigm modeling capabilities and easy to use graphical notations, with strong international organizational support and industrial production quality tool support. However, there is a lack of precise definition of the semantics of individual UML notations as well as the relationships among multiple UML models, which often introduces incomplete and inconsistent problems for software designs in UML, especially for complex systems. Furthermore, there is a lack of methodologies to ensure a correct implementation from a given UML design. The purpose of this investigation is to verify and validate software designs in UML, and to provide dependability assurance for the realization of a UML design.^ In my research, an approach is proposed to transform UML diagrams into a semantic domain, which is a formal component-based framework. The framework I proposed consists of components and interactions through message passing, which are modeled by two-layer algebraic high-level nets and transformation rules respectively. In the transformation approach, class diagrams, state machine diagrams and activity diagrams are transformed into component models, and transformation rules are extracted from interaction diagrams. By applying transformation rules to component models, a (sub)system model of one or more scenarios can be constructed. Various techniques such as model checking, Petri net analysis techniques can be adopted to check if UML designs are complete or consistent. A new component called property parser was developed and merged into the tool SAM Parser, which realize (sub)system models automatically. The property parser generates and weaves runtime monitoring code into system implementations automatically for dependability assurance. The framework in the investigation is creative and flexible since it not only can be explored to verify and validate UML designs, but also provides an approach to build models for various scenarios. As a result of my research, several kinds of previous ignored behavioral inconsistencies can be detected.^
Resumo:
FDI is believed to be a conduit of new technologies between countries. The first chapter of this dissertation studies the advantages of outward FDI for the home country of multinationals conducting research and development abroad. We use patent citations as a proxy for technology spillovers and we bring empirical evidence that supports the hypothesis that a U.S. subsidiary conducting research and development overseas facilitates the flow of knowledge between its host and home countries.^ The second chapter examines the impact of intellectual property rights (IPR) reforms on the technology flows between the U.S. and host countries of U.S. affiliates. We again use patent citations to examine whether the diffusion of new technology between the host countries and the U.S. is accelerated by the reforms. Our results suggest that the reforms favor innovative efforts of domestic firms in the reforming countries rather than U.S. affiliates efforts. In other words, reforms mediate the technology flows from the U.S. to the reforming countries.^ The third chapter deals with another form of IPR, open source (OS) licenses. These differ in the conditions under which licensors and OS contributors are allowed to modify and redistribute the source code. We measure OS project quality by the speed with which programming bugs are fixed and test whether the license chosen by project leaders influences bug resolution rates. In initial regressions, we find a strong correlation between the hazard of bug resolution and the use of highly restrictive licenses. However, license choices are likely to be endogenous. We instrument license choice using (i) the human language in which contributors operate and (ii) the license choice of the project leaders for a previous project. We then find weak evidence that restrictive licenses adversely affect project success.^