4 resultados para Isomorphic coordinate projections

em Digital Commons at Florida International University


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The contractile state of microcirculatory vessels is a major determinant of the blood pressure of the whole systemic circulation. Continuous bi-directional communication exists between the endothelial cells (ECs) and smooth muscle cells (SMCs) that regulates calcium (Ca2+) dynamics in these cells. This study presents theoretical approaches to understand some of the important and currently unresolved microcirculatory phenomena. ^ Agonist induced events at local sites have been shown to spread long distances in the microcirculation. We have developed a multicellular computational model by integrating detailed single EC and SMC models with gap junction and nitric oxide (NO) coupling to understand the mechanisms behind this effect. Simulations suggest that spreading vasodilation mainly occurs through Ca 2+ independent passive conduction of hyperpolarization in RMAs. Model predicts a superior role for intercellular diffusion of inositol (1,4,5)-trisphosphate (IP3) than Ca2+ in modulating the spreading response. ^ Endothelial derived signals are initiated even during vasoconstriction of stimulated SMCs by the movement of Ca2+ and/or IP3 into the EC which provide hyperpolarizing feedback to SMCs to counter the ongoing constriction. Myoendothelial projections (MPs) present in the ECs have been recently proposed to play a role in myoendothelial feedback. We have developed two models using compartmental and 2D finite element methods to examine the role of these MPs by adding a sub compartment in the EC to simulate MP with localization of intermediate conductance calcium activated potassium channels (IKCa) and IP3 receptors (IP 3R). Both models predicted IP3 mediated high Ca2+ gradients in the MP after SMC stimulation with limited global spread. This Ca 2+ transient generated a hyperpolarizing feedback of ∼ 2–3mV. ^ Endothelium derived hyperpolarizing factor (EDHF) is the dominant form of endothelial control of SMC constriction in the microcirculation. A number of factors have been proposed for the role of EDHF but no single pathway is agreed upon. We have examined the potential of myoendothelial gap junctions (MEGJs) and potassium (K+) accumulation as EDHF using two models (compartmental and 2D finite element). An extra compartment is added in SMC to simulate micro domains (MD) which have NaKα2 isoform sodium potassium pumps. Simulations predict that MEGJ coupling is much stronger in producing EDHF than alone K+ accumulation. On the contrary, K+ accumulation can alter other important parameters (EC V m, IKCa current) and inhibit its own release as well as EDHF conduction via MEGJs. The models developed in this study are essential building blocks for future models and provide important insights to the current understanding of myoendothelial feedback and EDHF.^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hotel feasibility studies are critical in the determination of hotel construction, sales and refinancing. Discrepancies have been reported between forecasted results and actual operating results. The author, with funding provided by the Hilton corporation, examines whether such studies under- state or overstate occupancy, average rate, and net income.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A presentation of maps illustrating the percentage of land surface remaining at varying sea level rise from 1ft - 12ft in Miami-Dade County.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neuroglobin (Ngb) and cytoglobin (Cygb) are two new additions to the globin family, exhibiting heme iron hexa-coordination, a disulfide bond and large internal cavities. These proteins are implicated in cytoprotection under hypoxic-ischemic conditions, but the molecular basis of their cytoprotective function is unclear. Herein, a photothermal and spectroscopic study of the interactions of diatomic ligands with Ngb, Cygb, myoglobin and hemoglobin is presented. The impact of the disulfide bond in Ngb and Cygb and role of conserved residues in Ngb His64, Val68, Cys55, Cys120 and Tyr44 on conformational dynamics associated with ligand binding/dissociation were investigated. Transient absorption and photoacoustic calorimetry studies indicate that CO photo-dissociation from Ngb leads to a volume expansion (13.4±0.9 mL mol-1), whereas a smaller volume change was determined for Ngb with reduced Cys (ΔV=4.6±0.3 mL mol-1). Furthermore, Val68 side chain regulates ligand migration between the distal pocket and internal hydrophobic cavities since Val68Phe geminate quantum yield is ∼2.7 times larger than that of WT Ngb. His64Gln and Tyr44Phe mutations alter the thermodynamic parameters associated with CO photo-release indicating that electrostatic/hydrogen binding network that includes heme propionate groups, Lys 67, His64, and Tyr 44 in Ngb modulates the energetics of CO photo-dissociation. In Cygb, CO escape from the protein matrix is fast (< 40 ns) with a ΔH of 18±2 kcal mol-1 in Cygbred, whereas disulfide bridge formation promotes a biphasic ligand escape associated with an overall enthalpy change of 9±4 kcal mol-1. Therefore, the disulfide bond modulates conformational dynamics in Ngb and Cygb. I propose that in Cygb with reduced Cys the photo-dissociated ligand escapes through the hydrophobic tunnel as occurs in Ngb, whereas the CO preferentially migrates through the His64 gate in Cygbox. To characterize Cygb surface 1,8-ANS interactions with Cygb were investigated employing fluorescence spectroscopy, ITC and docking simulations. Two 1,8-ANS binding sites were identified. One binding site is located close to the extended N-terminus of Cygb and was also identified as a binding site for oleate. Furthermore, guanidinium hydrochloride-induced unfolding studies of Cygb reveal that the disulfide bond does not impact Cygb stability, whereas binding of cyanide slightly increases the protein stability.