3 resultados para Ion exchange chromatography.

em Digital Commons at Florida International University


Relevância:

90.00% 90.00%

Publicador:

Resumo:

In many vertebrate and invertebrate species mediators of innate immunity include antimicrobial peptides (AMPs) such as peptide fragments of histones and other proteins with previously ascribed different functions. Shark AMPs have not been described and this research examines the antibacterial activity of nurse shark (Ginglymostoma cirratum) peripheral blood leukocyte lysates. Screening of lysates prepared by homogenizing unstimulated peripheral blood leukocytes identified muramidase (lysozyme-like) and non-muramidase antibacterial activity. Lysates were tested for lysozyme using the lysoplate assays, and antibacterial (AB) activity was assayed for by a microdilution growth assay that was developed using Planococcus citreus as the target bacterium. Fractionation of crude lysates by ion exchange and affinity chromatography was followed by a combination of SDS-PAGE with LC/MS-MS and/or N-terminal sequence analysis of low molecular weight protein bands (<20 kDa). This yielded several peptides with amino acid sequence similarity to lysozyme, ubiquitin, hemoglobin, human histones H2A, H2B and H4 and to antibacterial histone fragments of the catfish and the Asian toad. Not all peptide sequences corresponded to peptides potentially antibacterial. The correlation of a specific protein band in active lysate fractions was accomplished by employing the acid-urea gel overlay assays in which AB activity was seen as zones of growth inhibition on a lawn of P. citreus at a position corresponding to that of the putative AB protein band. This study is the first to describe putative AMPs in the shark and their potential role in innate immunity.^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Arsenic has been classified as a group I carcinogen. It has been ranked number one in the CERCLA priority list of hazardous substances due to its frequency, toxicity and potential for human exposure. Paradoxically, arsenic has been employed as a successful chemotherapeutic agent for acute promyelocytic leukemia and has found some success in multiple myeloma. Since arsenic toxicity and efficacy is species dependent, a speciation method, based on the complementary use of reverse phase and cation exchange chromatography, was developed. Inductively coupled plasma mass spectrometer (ICP-MS), as an element specific detector, and electrospray ionization mass spectrometer (ESI-MS), as a molecule specific detector, were employed. Low detection limits in the µg. L−1 range on the ICP-MS and mg. L−1 range on the ESI-MS were obtained. The developed methods were validated against each other through the use of a Deming plot. With the developed speciation method, the effects of both pH on the stability of As species and reduced glutathione (GSH) concentration on the formation and stability of arsenic glutathione complexes were studied. To identify arsenicals in multiple myeloma (MM) cell lines post arsenic trioxide (ATO) and darinaparsin (DAR) incubation, an extraction method based on the use of ultrasonic probe was developed. Extraction tools and solvents were evaluated and the effect of GSH concentration on the quantitation of arsenic glutathione (As-GSH) complexes in MM cell extracts was studied. The developed method was employed for the identification of metabolites in DAR incubated cell lines where the effect of extraction pH, DAR incubation concentration and incubation time on the relative distribution of the As metabolites was assessed. A new arsenic species, dimethyarsinothioyl glutathione (DMMTA V-GS), a pentavalent thiolated arsenical, was identified in the cell extracts through the use of liquid chromatography tandem mass spectrometry. The formation of the new metabolite in the extracts was dependent on the decomposition of s-dimethylarsino glutathione (DMA(GS)). These results have major implications in both the medical and toxicological fields of As because they involve the metabolism of a chemotherapeutic agent and the role sulfur compounds play in this mechanism.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this manuscript we define a new term we call coastal groundwater discharge (CGD), which is related to submarine groundwater discharge (SGD), but occurs when seawater intrudes inland to force brackish groundwater to discharge to the coastal wetlands. A hydrologic and geochemical investigation of both the groundwater and surface water in the southern Everglades was conducted to investigate the occurrence of CGD associated with seawater intrusion. During the wet season, the surface water chemistry remained fresh. Enhanced chloride, sodium, and calcium concentrations, indicative of brackish groundwater discharge, were observed in the surface water during the dry season. Brackish groundwaters of the southern Everglades contain 1–2.3μM concentrations of total phosphorus (TP). These concentrations exceed the expected values predicted by conservative mixing of local fresh groundwater and intruding seawater, which both have TPμM. The additional source of TP may be from seawater sediments or from the aquifer matrix as a result of water–rock interactions (such as carbonate mineral dissolution and ion exchange reactions) induced by mixing fresh groundwater with intruding seawater. We hypothesize that CGD maybe an additional source of phosphorus (a limiting nutrient) to the coastal wetlands of the southern Everglades.