7 resultados para Invasion
em Digital Commons at Florida International University
Resumo:
Abstract Two species of mangrove trees of Indo- Pacific origin have naturalized in tropical Atlantic mangrove forests in South Florida after they were planted and nurtured in botanic gardens. Two Bruguiera gymnorrhiza trees that were planted in the intertidal zone in 1940 have given rise to a population of at least 86 trees growing interspersed with native mangrove species Rhizophora mangle, Avicennia germinans and Laguncularia racemosa along 100 m of shoreline; the population is expanding at a rate of 5.6% year-1. Molecular genetic analyses confirm very low genetic diversity, as expected from a population founded by two individuals. The maximumnumber of alleles at any locus was three, and we measured reduced heterozygosity compared to native-range populations. Lumnitzera racemosa was introduced multiple times during the 1960s and 1970s, it has spread rapidly into a forest composed of native R. mangle, A. germinans, Laguncularia racemosa and Conocarpus erectus and now occupies 60,500 m2 of mangrove forest with stem densities of 24,735 ha-1. We estimate the population growth rate of Lumnitzera racemosa to be between 17 and 23% year-1. Populations of both species of naturalized mangroves are dominated by young individuals. Given the long life and water-dispersed nature of propagules of the two exotic species, it is likely that they have spread beyond our survey area. We argue that the species-depauperate nature of tropical Atlantic mangrove forests and close taxonomic relatives in the more species-rich Indo-Pacific region result in the susceptibility of tropical Atlantic mangrove forests to invasion by Indo-Pacific mangrove species.
Resumo:
Two species of mangrove trees of Indo- Pacific origin have naturalized in tropical Atlantic mangrove forests in South Florida after they were planted and nurtured in botanic gardens. Two Bruguiera gymnorrhiza trees that were planted in the intertidal zone in 1940 have given rise to a population of at least 86 trees growing interspersed with native mangrove species Rhizophora mangle, Avicennia germinans and Laguncularia racemosa along 100 m of shoreline; the population is expanding at a rate of 5.6% year-1. Molecular genetic analyses confirm very low genetic diversity, as expected from a population founded by two individuals. The maximumnumber of alleles at any locus was three, and we measured reduced heterozygosity compared to native-range populations. Lumnitzera racemosa was introduced multiple times during the 1960s and 1970s, it has spread rapidly into a forest composed of native R. mangle, A. germinans, Laguncularia racemosa and Conocarpus erectus and now occupies 60,500 m2 of mangrove forest with stem densities of 24,735 ha-1. We estimate the population growth rate of Lumnitzera racemosa to be between 17 and 23% year-1. Populations of both species of naturalized mangroves are dominated by young individuals. Given the long life and water-dispersed nature of propagules of the two exotic species, it is likely that they have spread beyond our survey area. We argue that the species-depauperate nature of tropical Atlantic mangrove forests and close taxonomic relatives in the more species-rich Indo-Pacific region result in the susceptibility of tropical Atlantic mangrove forests to invasion by Indo-Pacific mangrove species.
Resumo:
This material is based upon work supported by the National Science Foundation through the Florida Coastal Everglades Long-Term Ecological Research program under Cooperative Agreements #DBI-0620409 and #DEB-9910514. Any opinions, findings, conclusions, or recommendations expressed in the material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.
Resumo:
Rising health care costs are causing some employers to assess and regulate the health behaviors of their employees. Different approaches and levels of non-smoking regulations are discussed, and the legal parameters and challenges of regulating employees’ private behaviors are explored.
Resumo:
In the fall of 2005, U.S. Fish and Wildlife Services (USFWS) contracted with Florida International University (FIU) to study the physical and biological drivers underlying the distribution of woody plant species in the marl prairie habitat of the Cape Sable Seaside Sparrow (CSSS). This report presents what we have learned about woody plant encroachment based on studies carried out during the period 2006-2008. The freshwater marl prairie habitat currently occupied by the Cape Sable seaside sparrow (CSSS; Ammodramus maritimus mirabilis) is a dynamic mosaic comprised of species-rich grassland communities and tree islands of various sizes, densities and compositions. Landscape heterogeneity and the scale of vegetative components across the marl prairie is primarily determined by hydrologic conditions, biological factors (e.g. dispersal and growth morphology), and disturbances such as fire. The woody component of the marl prairie landscape is subject to expansion through multiple positive feedback mechanisms, which may be initiated by recent land use change (e.g. drainage). Because sparrows are known to avoid areas where the woody component is too extensive, a better understanding of invasion dynamics is needed to ensure proper management.
Resumo:
Metastasis is characterized pathologically by uncontrolled cell invasion, proliferation, migration and angiogenesis. Steroid hormones, such as estrogen, and growth factors, which include insulin growth factor I/II (IGF-1/IGF-2) therapy has been associated with most if not all of the features of metastasis. It has been determined that IGF-1 increases cell survival of cancer cells and potentiate the effect of E2 and other ligand growth factors on breast cancer cells. However not much information is available that comprehensively expounds on the roles of insulin growth factor receptor (IGFR) and Rab GTPases may play in breast cancer. The latter, Rab GTPases, are small signaling molecules and critical in the regulation of many cellular processes including cell migration, growth via the endocytic pathway. This research involves the role of Rab GTPases, specifically Rab5 and its guanine exchange factors (GEFs), in the promotion of cancer cell migration and invasion. Two important questions abound: Are IGFR stimulation and downstream effect involved the endocytic pathway in carcinogenesis? What role does Rab5 play in cell migration and invasion of cancer cells? The hypothesis is that growth factor signaling is dependent on Rab5 activity in mediating the aggressiveness of cancer cells. The goal is to demonstrate that IGF-1 signaling is dependent on Rab5 function in breast cancer progression. Here, the results thus far, have shown that while activation of Rab5 may mediate increased cell proliferation, migration and invasion in breast cancer cells, the Rab5 GEF, RIN1 interacts with the IGFR thereby facilitating migration and invasion activities in breast cells. Furthermore, endocytosis of the IGFR in breast cancer cells seems to be caveolin dependent as the data has shown. This taken together, the data shows that IGF-1 signaling in breast cancer cells relies on IGF-1R phosphorylation, caveolae internalization and sequestration to the early endosome RIN1 function and Rab5 activation.
Resumo:
Metastasis is characterized pathologically by uncontrolled cell invasion, proliferation, migration and angiogenesis. Steroid hormones, such as estrogen, and growth factors, which include insulin growth factor I/II (IGF-1/IGF-2) therapy has been associated with most if not all of the features of metastasis. It has been determined that IGF-1 increases cell survival of cancer cells and potentiate the effect of E2 and other ligand growth factors on breast cancer cells. However not much information is available that comprehensively expounds on the roles of insulin growth factor receptor (IGFR) and Rab GTPases may play in breast cancer. The latter, Rab GTPases, are small signaling molecules and critical in the regulation of many cellular processes including cell migration, growth via the endocytic pathway. This research involves the role of Rab GTPases, specifically Rab5 and its guanine exchange factors (GEFs), in the promotion of cancer cell migration and invasion. Two important questions abound: Are IGFR stimulation and downstream effect involved the endocytic pathway in carcinogenesis? What role does Rab5 play in cell migration and invasion of cancer cells? The hypothesis is that growth factor signaling is dependent on Rab5 activity in mediating the aggressiveness of cancer cells. The goal is to demonstrate that IGF-1 signaling is dependent on Rab5 function in breast cancer progression. Here, the results thus far, have shown that while activation of Rab5 may mediate increased cell proliferation, migration and invasion in breast cancer cells, the Rab5 GEF, RIN1 interacts with the IGFR thereby facilitating migration and invasion activities in breast cells. Furthermore, endocytosis of the IGFR in breast cancer cells seems to be caveolin dependent as the data has shown. This taken together, the data shows that IGF-1 signaling in breast cancer cells relies on IGF-1R phosphorylation, caveolae internalization and sequestration to the early endosome RIN1 function and Rab5 activation.^