3 resultados para Interstellar medium
em Digital Commons at Florida International University
Resumo:
Several different mechanisms leading to the formation of (substituted) naphthalene and azanaphthalenes were examined using theoretical quantum chemical calculations. As a result, a series of novel synthetic routes to Polycyclic Aromatic Hydrocarbons (PAHs) and Nitrogen Containing Polycyclic Aromatic Compounds (N-PACs) have been proposed. On Earth, these aromatic compounds originate from incomplete combustion and are released into our environment, where they are known to be major pollutants, often with carcinogenic properties. In the atmosphere of a Saturn's moon Titan, these PAH and N-PACs are believed to play a critical role in organic haze formation, as well as acting as chemical precursors to biologically relevant molecules. The theoretical calculations were performed by employing the ab initio G3(MP2,CC)/B3LYP/6-311G** method to effectively probe the Potential Energy Surfaces (PES) relevant to the PAH and N-PAC formation. Following the construction of the PES, Rice-Ramsperger-Kassel-Markus (RRKM) theory was used to evaluate all unimolecular rate constants as a function of collision energy under single-collision conditions. Branching ratios were then evaluated by solving phenomenological rate expressions for the various product concentrations. The most viable pathways to PAH and N-PAC formation were found to be those where the initial attack by the ethynyl (C2H) or cyano (CN) radical toward a unsaturated hydrocarbon molecule led to the formation of an intermediate which could not effectively lose a hydrogen atom. It is not until ring cyclization has occurred, that hydrogen elimination leads to a closed shell product. By quenching the possibility of the initial hydrogen atom elimination, one of the most competitive processes preventing the PAH or N-PAC formation was avoided, and the PAH or N-PAC formation was allowed to proceed. It is concluded that these considerations should be taken into account when attempting to explore any other potential routes towards aromatic compounds in cold environments, such as on Titan or in the interstellar medium.
Resumo:
An Ab Initio/RRKM study of the reaction mechanism and product branching ratios of neutral-radical ethynyl (C2H) and cyano (CN) radical species with unsaturated hydrocarbons is performed. The reactions studied apply to cold conditions such as planetary atmospheres including Titan, the Interstellar Medium (ISM), icy bodies and molecular clouds. The reactions of C2H and CN additions to gaseous unsaturated hydrocarbons are an active area of study. NASA's Cassini/Huygens mission found a high concentration of C2H and CN from photolysis of ethyne (C2H2) and hydrogen cyanide (HCN), respectively, in the organic haze layers of the atmosphere of Titan. The reactions involved in the atmospheric chemistry of Titan lead to a vast array of larger, more complex intermediates and products and may also serve as a chemical model of Earth's primordial atmospheric conditions. The C2H and CN additions are rapid and exothermic, and often occur barrierlessly to various carbon sites of unsaturated hydrocarbons. The reaction mechanism is proposed on the basis of the resulting potential energy surface (PES) that includes all the possible intermediates and transition states that can occur, and all the products that lie on the surface. The B3LYP/6-311g(d,p) level of theory is employed to determine optimized electronic structures, moments of inertia, vibrational frequencies, and zero-point energy. They are followed by single point higher-level CCSD(T)/cc-vtz calculations, including extrapolations to complete basis sets (CBS) of the reactants and products. A microcanonical RRKM study predicts single-collision (zero-pressure limit) rate constants of all reaction paths on the potential energy surface, which is then used to compute the branching ratios of the products that result. These theoretical calculations are conducted either jointly or in parallel to experimental work to elucidate the chemical composition of Titan's atmosphere, the ISM, and cold celestial bodies.<.
Resumo:
An Ab Initio/RRKM study of the reaction mechanism and product branching ratios of neutral-radical ethynyl (C2H) and cyano (CN) radical species with unsaturated hydrocarbons is performed. The reactions studied apply to cold conditions such as planetary atmospheres including Titan, the Interstellar Medium (ISM), icy bodies and molecular clouds. The reactions of C2H and CN additions to gaseous unsaturated hydrocarbons are an active area of study. NASA’s Cassini/Huygens mission found a high concentration of C2H and CN from photolysis of ethyne (C2H2) and hydrogen cyanide (HCN), respectively, in the organic haze layers of the atmosphere of Titan. The reactions involved in the atmospheric chemistry of Titan lead to a vast array of larger, more complex intermediates and products and may also serve as a chemical model of Earth’s primordial atmospheric conditions. The C2H and CN additions are rapid and exothermic, and often occur barrierlessly to various carbon sites of unsaturated hydrocarbons. The reaction mechanism is proposed on the basis of the resulting potential energy surface (PES) that includes all the possible intermediates and transition states that can occur, and all the products that lie on the surface. The B3LYP/6-311g(d,p) level of theory is employed to determine optimized electronic structures, moments of inertia, vibrational frequencies, and zero-point energy. They are followed by single point higher-level CCSD(T)/cc-vtz calculations, including extrapolations to complete basis sets (CBS) of the reactants and products. A microcanonical RRKM study predicts single-collision (zero-pressure limit) rate constants of all reaction paths on the potential energy surface, which is then used to compute the branching ratios of the products that result. These theoretical calculations are conducted either jointly or in parallel to experimental work to elucidate the chemical composition of Titan’s atmosphere, the ISM, and cold celestial bodies.