4 resultados para Internal working models

em Digital Commons at Florida International University


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Over the past two decades, interest in the psychological development of children has steadily increased (Beg, Casey, & Saunders, 2007), presumably because statistics describing childhood psychological illness are alarming. Certain parent interaction styles or behaviors are known to influence child adjustment. According to attachment theory, the reason for these findings is that interaction with a caregiver informs an individual’s construction of an internal working model (IWM) of the self in relation to others in the environment. The purpose of this study was to gain a greater understanding of the factors contributing to child adjustment by examining the influence of parents’ emotional functioning and parent responsiveness to children’s bids for interaction. This dissertation tested a multivariate model of attachment-related processes and outcomes with an ethnically diverse sample. Results partially supported the model, in that parent emotional intelligence predicted some aspects of child adjustment. Overall, the study adds to knowledge about how parent characteristics influence child adjustment and provides support for conceptualizing emotional intelligence as a concrete and observable manifestation of the nonconscious attachment IWM.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of the present dissertation was to evaluate the internal validity of symptoms of four common anxiety disorders included in the Diagnostic and Statistical Manual of Mental Disorders fourth edition (text revision) (DSM-IV-TR; American Psychiatric Association, 2000), namely, separation anxiety disorder (SAD), social phobia (SOP), specific phobia (SP), and generalized anxiety disorder (GAD), in a sample of 625 youth (ages 6 to 17 years) referred to an anxiety disorders clinic and 479 parents. Confirmatory factor analyses (CFAs) were conducted on the dichotomous items of the SAD, SOP, SP, and GAD sections of the youth and parent versions of the Anxiety Disorders Interview Schedule for DSM-IV (ADIS-IV: C/P; Silverman & Albano, 1996) to test and compare a number of factor models including a factor model based on the DSM. Contrary to predictions, findings from CFAs showed that a correlated model with five factors of SAD, SOP, SP, GAD worry, and GAD somatic distress, provided the best fit of the youth data as well as the parent data. Multiple group CFAs supported the metric invariance of the correlated five factor model across boys and girls. Thus, the present study’s finding supports the internal validity of DSM-IV SAD, SOP, and SP, but raises doubt regarding the internal validity of GAD.^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Quantitative Structure-Activity Relationship (QSAR) has been applied extensively in predicting toxicity of Disinfection By-Products (DBPs) in drinking water. Among many toxicological properties, acute and chronic toxicities of DBPs have been widely used in health risk assessment of DBPs. These toxicities are correlated with molecular properties, which are usually correlated with molecular descriptors. The primary goals of this thesis are: (1) to investigate the effects of molecular descriptors (e.g., chlorine number) on molecular properties such as energy of the lowest unoccupied molecular orbital (E LUMO) via QSAR modelling and analysis; (2) to validate the models by using internal and external cross-validation techniques; (3) to quantify the model uncertainties through Taylor and Monte Carlo Simulation. One of the very important ways to predict molecular properties such as ELUMO is using QSAR analysis. In this study, number of chlorine (NCl ) and number of carbon (NC) as well as energy of the highest occupied molecular orbital (EHOMO) are used as molecular descriptors. There are typically three approaches used in QSAR model development: (1) Linear or Multi-linear Regression (MLR); (2) Partial Least Squares (PLS); and (3) Principle Component Regression (PCR). In QSAR analysis, a very critical step is model validation after QSAR models are established and before applying them to toxicity prediction. The DBPs to be studied include five chemical classes: chlorinated alkanes, alkenes, and aromatics. In addition, validated QSARs are developed to describe the toxicity of selected groups (i.e., chloro-alkane and aromatic compounds with a nitro- or cyano group) of DBP chemicals to three types of organisms (e.g., Fish, T. pyriformis, and P.pyosphoreum) based on experimental toxicity data from the literature. The results show that: (1) QSAR models to predict molecular property built by MLR, PLS or PCR can be used either to select valid data points or to eliminate outliers; (2) The Leave-One-Out Cross-Validation procedure by itself is not enough to give a reliable representation of the predictive ability of the QSAR models, however, Leave-Many-Out/K-fold cross-validation and external validation can be applied together to achieve more reliable results; (3) E LUMO are shown to correlate highly with the NCl for several classes of DBPs; and (4) According to uncertainty analysis using Taylor method, the uncertainty of QSAR models is contributed mostly from NCl for all DBP classes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Quantitative Structure-Activity Relationship (QSAR) has been applied extensively in predicting toxicity of Disinfection By-Products (DBPs) in drinking water. Among many toxicological properties, acute and chronic toxicities of DBPs have been widely used in health risk assessment of DBPs. These toxicities are correlated with molecular properties, which are usually correlated with molecular descriptors. The primary goals of this thesis are: 1) to investigate the effects of molecular descriptors (e.g., chlorine number) on molecular properties such as energy of the lowest unoccupied molecular orbital (ELUMO) via QSAR modelling and analysis; 2) to validate the models by using internal and external cross-validation techniques; 3) to quantify the model uncertainties through Taylor and Monte Carlo Simulation. One of the very important ways to predict molecular properties such as ELUMO is using QSAR analysis. In this study, number of chlorine (NCl) and number of carbon (NC) as well as energy of the highest occupied molecular orbital (EHOMO) are used as molecular descriptors. There are typically three approaches used in QSAR model development: 1) Linear or Multi-linear Regression (MLR); 2) Partial Least Squares (PLS); and 3) Principle Component Regression (PCR). In QSAR analysis, a very critical step is model validation after QSAR models are established and before applying them to toxicity prediction. The DBPs to be studied include five chemical classes: chlorinated alkanes, alkenes, and aromatics. In addition, validated QSARs are developed to describe the toxicity of selected groups (i.e., chloro-alkane and aromatic compounds with a nitro- or cyano group) of DBP chemicals to three types of organisms (e.g., Fish, T. pyriformis, and P.pyosphoreum) based on experimental toxicity data from the literature. The results show that: 1) QSAR models to predict molecular property built by MLR, PLS or PCR can be used either to select valid data points or to eliminate outliers; 2) The Leave-One-Out Cross-Validation procedure by itself is not enough to give a reliable representation of the predictive ability of the QSAR models, however, Leave-Many-Out/K-fold cross-validation and external validation can be applied together to achieve more reliable results; 3) ELUMO are shown to correlate highly with the NCl for several classes of DBPs; and 4) According to uncertainty analysis using Taylor method, the uncertainty of QSAR models is contributed mostly from NCl for all DBP classes.