2 resultados para Initial formation
em Digital Commons at Florida International University
Resumo:
Since the arrival of the first African slaves to Cuba in 1524, the issue of race has had a long-lived presence in the Cuban national discourse. However, despite Cuba’s colonial history, it has often been maintained by some historians that race relations in Cuba were congenial with racism and racial discrimination never existing as deep or widespread in Cuba as in the United States (Cannon, 1983, p. 113). In fact, it has been argued that institutionalized racism was introduced into Cuban society with the first U.S. occupation, during 1898–1902 (Cannon, 1983, p. 113). This study of Cuba investigates the influence of the United States on the development of race relations and racial perceptions in post-independent Cuba, specifically from 1898-1902. These years comprise the time period immediately following the final fight for Cuban Independence, culminating with the Cuban-Spanish-American War and the first U.S. occupation of Cuba. By this time, the Cuban population comprised Africans as well as descendants of Africans, White Spanish people, indigenous Cubans, and offspring of the intermixing of the groups. This research studies whether the United States’ own race relations and racial perceptions influenced the initial conflicting race relations and racial perceptions in early and post-U.S. occupation Cuba. This study uses a collective interpretative framework that incorporates a national level of analysis with a race relations and racial perceptions focus. This framework reaches beyond the traditionally utilized perspectives when interpreting the impact of the United States during and following its intervention in Cuba. Attention is given to the role of the existing social, political climate within the United States as a driving influence of the United States’ involvement with Cuba. This study reveals that emphasis on the role of the United States as critical to the development of Cuba’s race relations and racial perceptions is credible given the extensive involvement of the U.S. in the building of the early Cuban Republic and U.S. structures serving as models for reconstruction. U.S. government formation in Cuba aligned with a governing system reflecting the existing governing codes of the U.S. during that time period.
Resumo:
Several different mechanisms leading to the formation of (substituted) naphthalene and azanaphthalenes were examined using theoretical quantum chemical calculations. As a result, a series of novel synthetic routes to Polycyclic Aromatic Hydrocarbons (PAHs) and Nitrogen Containing Polycyclic Aromatic Compounds (N-PACs) have been proposed. On Earth, these aromatic compounds originate from incomplete combustion and are released into our environment, where they are known to be major pollutants, often with carcinogenic properties. In the atmosphere of a Saturn's moon Titan, these PAH and N-PACs are believed to play a critical role in organic haze formation, as well as acting as chemical precursors to biologically relevant molecules. The theoretical calculations were performed by employing the ab initio G3(MP2,CC)/B3LYP/6-311G** method to effectively probe the Potential Energy Surfaces (PES) relevant to the PAH and N-PAC formation. Following the construction of the PES, Rice-Ramsperger-Kassel-Markus (RRKM) theory was used to evaluate all unimolecular rate constants as a function of collision energy under single-collision conditions. Branching ratios were then evaluated by solving phenomenological rate expressions for the various product concentrations. The most viable pathways to PAH and N-PAC formation were found to be those where the initial attack by the ethynyl (C2H) or cyano (CN) radical toward a unsaturated hydrocarbon molecule led to the formation of an intermediate which could not effectively lose a hydrogen atom. It is not until ring cyclization has occurred, that hydrogen elimination leads to a closed shell product. By quenching the possibility of the initial hydrogen atom elimination, one of the most competitive processes preventing the PAH or N-PAC formation was avoided, and the PAH or N-PAC formation was allowed to proceed. It is concluded that these considerations should be taken into account when attempting to explore any other potential routes towards aromatic compounds in cold environments, such as on Titan or in the interstellar medium.