9 resultados para Infrastructure concessio
em Digital Commons at Florida International University
Resumo:
Financial innovations have emerged globally to close the gap between the rising global demand for infrastructures and the availability of financing sources offered by traditional financing mechanisms such as fuel taxation, tax-exempt bonds, and federal and state funds. The key to sustainable innovative financing mechanisms is effective policymaking. This paper discusses the theoretical framework of a research study whose objective is to structurally and systemically assess financial innovations in global infrastructures. The research aims to create analysis frameworks, taxonomies and constructs, and simulation models pertaining to the dynamics of the innovation process to be used in policy analysis. Structural assessment of innovative financing focuses on the typologies and loci of innovations and evaluates the performance of different types of innovative financing mechanisms. Systemic analysis of innovative financing explores the determinants of the innovation process using the System of Innovation approach. The final deliverables of the research include propositions pertaining to the constituents of System of Innovation for infrastructure finance which include the players, institutions, activities, and networks. These static constructs are used to develop a hybrid Agent-Based/System Dynamics simulation model to derive propositions regarding the emergent dynamics of the system. The initial outcomes of the research study are presented in this paper and include: (a) an archetype for mapping innovative financing mechanisms, (b) a System of Systems-based analysis framework to identify the dimensions of Systems of Innovation analyses, and (c) initial observations regarding the players, institutions, activities, and networks of the System of Innovation in the context of the U.S. transportation infrastructure financing.
Resumo:
Traditional methods of financing infrastructure, which include gas taxation, tax-exempt bonds, and reserve funds, have not been able to meet the growing demand for infrastructure. Innovative financing systems have emerged to close the gap that exists between the available and needed financing sources. The objective of the study presented in this paper is to assess determinants of innovative financing in the U.S. transportation infrastructure using a systemic approach. Innovation System of Systems approach is adopted for systemic assessment and a case-based research approach is utilized to explore the constituents of innovative financing for U.S. transportation infrastructure. The findings, which include constructs regarding the players, practices, and activities are used to create a model to enable understanding the dynamics of the drivers and inhibitors of innovation and, thus, to derive implications for practice. The model along with the constructs provides an analytical tool for practitioners in the U.S. transportation infrastructure.
Resumo:
Infrastructure management agencies are facing multiple challenges, including aging infrastructure, reduction in capacity of existing infrastructure, and availability of limited funds. Therefore, decision makers are required to think innovatively and develop inventive ways of using available funds. Maintenance investment decisions are generally made based on physical condition only. It is important to understand that spending money on public infrastructure is synonymous with spending money on people themselves. This also requires consideration of decision parameters, in addition to physical condition, such as strategic importance, socioeconomic contribution and infrastructure utilization. Consideration of multiple decision parameters for infrastructure maintenance investments can be beneficial in case of limited funding. Given this motivation, this dissertation presents a prototype decision support framework to evaluate trade-off, among competing infrastructures, that are candidates for infrastructure maintenance, repair and rehabilitation investments. Decision parameters' performances measured through various factors are combined to determine the integrated state of an infrastructure using Multi-Attribute Utility Theory (MAUT). The integrated state, cost and benefit estimates of probable maintenance actions are utilized alongside expert opinion to develop transition probability and reward matrices for each probable maintenance action for a particular candidate infrastructure. These matrices are then used as an input to the Markov Decision Process (MDP) for the finite-stage dynamic programming model to perform project (candidate)-level analysis to determine optimized maintenance strategies based on reward maximization. The outcomes of project (candidate)-level analysis are then utilized to perform network-level analysis taking the portfolio management approach to determine a suitable portfolio under budgetary constraints. The major decision support outcomes of the prototype framework include performance trend curves, decision logic maps, and a network-level maintenance investment plan for the upcoming years. The framework has been implemented with a set of bridges considered as a network with the assistance of the Pima County DOT, AZ. It is expected that the concept of this prototype framework can help infrastructure management agencies better manage their available funds for maintenance.
Resumo:
Infrastructure systems are drivers of the economy in the nation. A dollar spent on infrastructure development yields roughly double the initial spending in ultimate economic output in the short term; and over a twenty-year period, and generalized ‘public investment’ produces an aggregated $3.21 of economic activity per $1.00 spent [1]. Thus, formulation of policies pertaining to infrastructure investment and development is of significance affecting the social and economic wellbeing of the nation. The aim of this policy brief is to evaluate innovative financing in infrastructure systems from two different perspectives: (1) through consideration of the current condition of infrastructure in the U.S., the current trends in public spending, and the emerging innovative financing tools; (2) through evaluation of the roles and interactions of different agencies in the creation and the diffusion of innovative financing tools. Then using the example of transportation financing, the policy brief provides an assessment of policy landscapes which could lead to the closure of infrastructure financing gap in the U.S and proposes strategies for citizen involvement to gain public support of innovative financing.
Resumo:
This flyer promotes the event "Water Infrastructure in Cuba: A Seminar" , cosponsored by FlU's College of Engineering and Computing, Applied Research Center, Global Water for Sustainability Program, Latin American and Caribbean Center, and the Cuban American Association of Civil Engineers.
Resumo:
Distributed Generation (DG) from alternate sources and smart grid technologies represent good solutions for the increase in energy demands. Employment of these DG assets requires solutions for the new technical challenges that are accompanied by the integration and interconnection into operational power systems. A DG infrastructure comprised of alternate energy sources in addition to conventional sources, is developed as a test bed. The test bed is operated by synchronizing, wind, photovoltaic, fuel cell, micro generator and energy storage assets, in addition to standard AC generators. Connectivity of these DG assets is tested for viability and for their operational characteristics. The control and communication layers for dynamic operations are developed to improve the connectivity of alternates to the power system. A real time application for the operation of alternate sources in microgrids is developed. Multi agent approach is utilized to improve stability and sequences of actions for black start are implemented. Experiments for control and stability issues related to dynamic operation under load conditions have been conducted and verified.