2 resultados para Identification parameters

em Digital Commons at Florida International University


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this research was to study interfering products in fire debris analysis, including their identification and characterization. Different substrates were classified, burned, extracted and analyzed in order to identify all the interfering products that they may release. It has been shown that these products come from three different sources: substrate background products, pyrolysis products and possibly combustion products. Different parameters in the creation of these products were evaluated such as the extinguishment process as well as the weathering of the sample prior to the analysis. It has been shown that the presence of these products is not always constant and thus, makes it difficult to extrapolate data to similar cases. Furthermore, some of these products are similar to the ones found in ignitable liquids. Finally, it shows one more time how important it is to collect and analyze control samples in fire debris analysis. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Photoproduction of neutral kaons off a deuteron target has been investigated at the Tohoku University Laboratory of Nuclear Science. The PID methods investigated incorporated a combination of momentum, velocity (β=v/c), and energy deposition per unit length (dE/dx) measurements. The analysis demonstrates that energy deposition and time of flight are exceedingly useful. A higher signal to background ratio was achieved for hard cuts in combination. A probabilistic likelihood estimation approach (LE) as a method for PID was also explored. The probability of a particle being correctly identified by this LE method and the preliminary results denote the need for highly precise limitations on the distributions from which the parameters would be extracted. It was confirmed that these PID are applicable approaches to properly identify pions for the analysis of this experiment. However, the background evident in the mass spectra points to the need for a higher level of proton identification.