2 resultados para Ideal observer analysis
em Digital Commons at Florida International University
Resumo:
Small Arms and Light Weapons (SALW) proliferation was undertaken by the Non-Governmental Organizations (NGOs) as the next important issue in international relations after the success of the International Campaign to Ban Landmines (ICBL). This dissertation focuses on the reasons why the issue of SALW resulted in an Action Program rather than an international convention. Thus, this result was considered as unsuccessful by the advocates of regulating the illicit trade in SALW. The study provides a social movement theoretical approach, using framing, political opportunity and network analysis to explain why the advocates of regulating the illicit trade in SALW did no succeed in their goals. The UN is taken as the arena in which NGOs, States and International Governmental Organizations (IGOs) discussed the illicit trade in SALW. ^ The findings of the study indicate that the political opportunity for the issue of SALW was not ideal. The network of NGOs, States and IGOs was not strong. The NGOs advocating regulation of SALW were divided over the approach of the issue and were part of different coalitions with differing objectives. Despite initial widespread interest among States, only a couple of States were fully committed to the issue till the end. The regional IGOs approached the issue based on their regional priorities and were less interested in an international covenant. The advocates of regulating illicit trade in SALW attempted to frame SALW as a humanitarian issue rather than as a security issue. Thus they were not able to use frame alignment to convince states to treat SALW as a humanitarian issue. In conclusion it can be said that all three items, framing, political opportunity and the network, play a role in the lack of success of advocates for regulating the illicit trade in SALW. ^
Resumo:
New designer drugs are constantly emerging onto the illicit drug market and it is often difficult to validate and maintaincomprehensive analytical methods for accurate detection of these compounds. Generally, toxicology laboratories utilize a screening method, such as immunoassay, for the presumptive identification of drugs of abuse. When a positive result occurs, confirmatory methods, such as gas chromatography (GC) or liquid chromatography (LC) coupled with mass spectrometry (MS), are required for more sensitive and specific analyses. In recent years, the need to study the activities of these compounds in screening assays as well as to develop confirmatory techniques to detect them in biological specimens has been recognized. Severe intoxications and fatalities have been encountered with emerging designer drugs, presenting analytical challenges for detection and identification of such novel compounds. The first major task of this research was to evaluate the performance of commercially available immunoassays to determine if designer drugs were cross-reactive. The second major task was to develop and validate a confirmatory method, using LC-MS, to identify and quantify these designer drugs in biological specimens.^ Cross-reactivity towards the cathinone derivatives was found to be minimal. Several other phenethylamines demonstrated cross-reactivity at low concentrations, but results were consistent with those published by the assay manufacturer or as reported in the literature. Current immunoassay-based screening methods may not be ideal for presumptively identifying most designer drugs, including the "bath salts." For this reason, an LC-MS based confirmatory method was developed for 32 compounds, including eight cathinone derivatives, with limits of quantification in the range of 1-10 ng/mL. The method was fully validated for selectivity, matrix effects, stability, recovery, precision, and accuracy. In order to compare the screening and confirmatory techniques, several human specimens were analyzed to demonstrate the importance of using a specific analytical method, such as LC-MS, to detect designer drugs in serum as immunoassays lack cross-reactivity with the novel compounds. Overall, minimal cross-reactivity was observed, highlighting the conclusion that these presumptive screens cannot detect many of the designer drugs and that a confirmatory technique, such as the LC-MS, is required for the comprehensive forensic toxicological analysis of designer drugs.^