2 resultados para INTERNAL ELECTRIC-FIELD
em Digital Commons at Florida International University
Resumo:
This paper for the first time discusses a computational study of using magneto-electric (ME) nanoparticles to artificially stimulate the neural activity deep in the brain. The new technology provides a unique way to couple electric signals in the neural network to the magnetic dipoles in the nanoparticles with the purpose to enable a non-invasive approach. Simulations of the effect of ME nanoparticles for non-invasively stimulating the brain of a patient with Parkinson’s Disease to bring the pulsed sequences of the electric field to the levels comparable to those of healthy people show that the optimized values for the concentration of the 20-nm nanoparticles (with the magneto-electric (ME) coefficient of 100 V cm21 Oe21 in the aqueous solution) is 36106 particles/cc, and the frequency of the externally applied 300-Oe magnetic field is 80 Hz.
Resumo:
The field emission measurements for the multistage structured nanotubes (i.e., thin-multiwall and single wall carbon nanotubes grown on multiwall carbon nanotubes) were carried out and a low turn-on field of ~0.45 V/ μm, high emission current of 450 μA at a field of IV/μm and a large field enhancement factor of ~26200 were obtained. The thin multiwall carbon nanotubes (thin-MWNTs) and single wall carbon nanotubes (SWNTs) were grown on the regular arrays of vertically aligned multi wall carbon nanotubes (MWNTs) on porous silicon substrate by Chemical Vapor Deposition (CVD) method. The thin-MWNTs and SWNTs grown on MWNTs in this way have a multistage structure which gives higher enhancement of the electric field and hence the electron field emission.